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Hydrogen bonding distinguishes water from simpler fluids. Here, we use classical molecular dynamics
to study the percolation transition in the hydrogen bond network of supercritical water. We find that,
contrary to some previous work, the percolation line in both the pressure-temperature and density-
temperature planes does not coincide with the Widom line. This difference stems from a fundamental
distinction between the Widom line, which is thermodynamic in nature, and the percolation transi-
tion, which depends only on connectivity. For example, we show that percolation-related quantities
collapse onto master curves when plotted with respect to a measure of connectivity rather than ther-
modynamic variables. We then use the Galam-Mauger formula to understand the properties of the
hydrogen bonding network. We find that the percolation transition in supercritical water can shed light
on the hydrogen bonding network in room temperature liquid water. Published by AIP Publishing.
https://doi.org/10.1063/1.5042556

I. INTRODUCTION

Supercritical fluids have numerous industrial applications,
from decaffeination1 to “green” biomass gasification2 and haz-
ardous waste cleanup.3 Most of these applications stem from
a single property of supercritical fluids: their tunable density.
Normal (subcritical) fluids exist only in very narrow ranges of
density because the density is discontinuous across the liquid-
vapor phase transition. Since many useful physical properties
of fluids are strong functions of the density, the tunable den-
sity of supercritical fluids translates into tunable properties.
By tuning the density of a supercritical fluid, one can find a
fluid that has both good mass flow properties like a gas as well
as good solvent properties like a liquid.

Despite these practical industrial advantages, supercritical
fluids remain poorly understood from a theoretical perspec-
tive, especially in non-trivial fluids like water. One feature
of the supercritical fluid is the Widom line: the continua-
tion of the liquid-vapor coexistence line into the supercritical
phase.4,5 The liquid-vapor coexistence line ends in a critical
point, where thermodynamic susceptibilities like compress-
ibility βT and heat capacity CP, as well as the correlation
length, diverge. Above the critical point, these quantities
remain finite but reach maxima along various isobars or
isotherms. The Widom line is defined by the locations of these
maxima. The position of the Widom line depends both on the
susceptibility used to define it and on the path taken through
the phase diagram (e.g., isobar or isotherm).6–10 The Widom
line was first studied in terms of maxima in CP along iso-
bars4 and was later defined by the maxima in the correlation
length.5 Sufficiently close to the critical point, these definitions
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coincide because all of the susceptibilities become functions
of the correlation length. In principle, this removes ambi-
guity from the choice in susceptibility, but the ambiguity in
the choice of path through the phase diagram remains.9,10

These ambiguities call into question any ideas that lend mean-
ing to the Widom line beyond a simple continuation of the
coexistence line.

Despite these ambiguities, the concept of the Widom line
has been used in a variety of contexts. It was first used as evi-
dence of a nearby critical point in the context of the postulated
liquid-liquid critical point in supercooled water.5,11 This con-
cept was later applied to the liquid-vapor critical point, where
there is evidence that the Widom line demarcates a crossover
between a “liquid-like” supercritical fluid and a “gas-like”
one.12–14 This crossover is marked by changes in the dynamics,
including sound dispersion,13 diffusion,5,15 and viscosity.7,15

Others believe that these dynamical crossovers are, however,
better described by the so-called “Frenkel line,” which is itself
defined in terms of the system’s dynamics, rather than thermo-
dynamics, as in the case of the Widom line.16–18 Still others
have looked beyond the dynamics for structural differences
between the two “states.”19

One hypothetical structural difference pertains to the
hydrogen bonding network in supercritical water. It is well
known that room temperature liquid water is dominated by
percolating hydrogen bond networks and that the gas is not.20

Therefore, as one passes continuously from the gas to the liq-
uid, through the supercritical region, there must be some point
where this hydrogen bond network forms. This transition can
be understood in the context of percolation theory. Percolation
theory was originally developed to study the formation of per-
colating, or system spanning, networks in regular lattices.21,22

The central question in “bond” percolation is as follows: if
each bond between nearest-neighbor lattice sites is occupied
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randomly with probability p, at what critical probability pc

does an infinite, system spanning cluster form? In an infinite
system, this transition is sharp and has the features of a second-
order thermodynamic phase transition including universality
and a divergent correlation length.22

Percolation theory can be extended to continuum, off-
lattice systems, like supercritical fluids.23 This requires a suit-
able way to decide whether two particles are “connected” or
not. Simple distance cutoffs can be used,24,25 but in the case of
water, the hydrogen bonding network presents a natural way
to define connectivity. In this manner, both computer simu-
lations26 and experiments coupled with simulations27 have
found that the percolation transition of the hydrogen bond-
ing network in supercritical water coincides with the Widom
line.

If the Widom line is viewed as the dividing line between
gas-like and liquid-like fluids, this conclusion seems natural.
On the other hand, one might not expect the two phenomena
to be related at all. A simple hard sphere fluid, for exam-
ple, does not have a critical point and therefore no Widom
line.28 One can, however, still find a percolation transition by
defining connectivity in terms of hard sphere contacts, among
other possible definitions.29 On the other hand, a Lennard-
Jones fluid has a Widom line,6 but it is not so obvious how to
define percolation.24,30 In agreement with this intuition, both
Raman spectroscopy31 and a simple comparison of hydrogen
bond counts32 suggest that the Widom line is distinct from the
percolation transition. Initially, simulations found that the per-
colation and Widom lines coincide as discussed above,26 but
later work suggested that they do not,33 highlighting the need
for clarity in this literature.

Here, we use classical molecular dynamics simulations
to locate both the Widom line (Sec. II B) and the percola-
tion transition (Sec. II C) in the supercritical region of the
phase diagram. We find that the Widom line does not coin-
cide with the percolation transition (Sec. III A). We use finite
size scaling and dense sampling in the phase diagram to
locate the percolation transition accurately, and in this way,
we are able to distinguish the percolation transition from the
Widom line, where previous work could not.26,27 Our results
do not eliminate the possibility that the Widom line sep-
arates a liquid-like supercritical fluid from a gas-like one,
with qualitative observable differences, but they do demon-
strate that hydrogen bond percolation is not one of these
differences.

To understand the difference between percolation and the
Widom line (Sec. III B), we note that the Widom line is a ther-
modynamic phenomenon. It is described by thermodynamic
susceptibilities, which are derivatives of the free energy. Per-
colation, on the other hand, is a geometric phenomenon. It
depends only on the connectivity of the system. While the
number of hydrogen bonds depends on the thermodynamic
state of the system, the structure and connectivity of the under-
lying network depends very weakly on the thermodynamics.
Thermodynamics is the knob that tunes the system through
the percolation transition, analogous to the bond probabil-
ity p in random-bond percolation theory. This is fundamen-
tally different from the role thermodynamics plays in phase
coexistence, the critical point, and the Widom line, where

discontinuities in various derivatives of the free energy dictate
the behavior.

II. METHODS
A. Simulation details

We perform classical molecular dynamics simulations
with the E3B334 rigid water model. Section III C contains
a discussion of the choice of water model. Intermolecular
geometries are constrained with the LINCS algorithm.35 The
dynamics are integrated using the leap-frog algorithm36 with
a 1 fs time step and a Nosé-Hoover thermostat with a 0.1 ps
damping time.37,38 The NPT simulations use a Parrinello-
Rahman barostat with a 1 ps damping time.39 We use periodic
boundary conditions with the particle mesh Ewald method for
long range electrostatic interactions.40 Simulations are per-
formed with the GROMACS package41 modified to use the
E3B3 force field. The modified code can be downloaded at
https://ime.uchicago.edu/skinner group/research.

B. Widom line

We locate the Widom line in the pressure-temperature
(P, T ) plane by performing NPT simulations along isobars.7

We compute the compressibility βT using the fluctuations in
the box volume (Fig. 1).42 The temperature that maximizes
the compressibility for each isobar describes a point (P, T ) on
the Widom line in the pressure-temperature plane. For a given
isobar, the temperature that maximizes the compressibility is
only known to be between the two temperatures that bound the
maximum on either side. The error in the temperature at the
compressibility maxima is therefore given by this resolution
in temperature. We sample with a resolution of 5 K near the
compressibility maximum. The error in the pressure position
of the Widom line is given by the standard deviation of the
mean of the pressure time series, sampled every 1 ps.

FIG. 1. The compressibility βT along equally spaced isobars from 163 bar
(blue) to 393 bar (red). These simulations use the E3B3 water model, which
has a critical point at 143 bar and 626 K.34

https://ime.uchicago.edu/skinner_group/research
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We convert the Widom line in the (P, T ) plane to the
(ρ, T ) plane by computing the average density of the simula-
tion at each compressibility maximum. The confidence interval
in density is given by the average densities of the simula-
tions at the two temperatures that bound the maximum. This
confidence interval can be quite large near the critical point
because there the density is a very strong function of the tem-
perature. Much higher resolution in temperature could reduce
this error and pin down the location of the Widom line more
precisely.

C. Percolation threshold

In an infinite system with a critical point, the correlation
length ξ diverges to infinity at the critical point. In a finite
system, the correlation length cannot diverge, but the ratio of
the correlation length to the system size ξ/L goes to a constant
value, independent of system size L.43,44 We use this finite-size
scaling property to locate the critical point. The relevant corre-
lation length is the root mean squared distance between water
molecules that are on the same hydrogen bonded cluster22,44

ξ2 =

〈∑
i,j

∆ijr
2
ij

〉/〈∑
i,j

∆ij

〉
, (1)

where ∆ij is unity if molecule i and j are on the same hydrogen
bonded cluster and zero otherwise, and the averages 〈·〉 are
over configurations sampled at constant density.

In order to discuss hydrogen bonded clusters, we must
define a hydrogen bond. We implement three geometric hydro-
gen bond definitions for comparison. The definitions are
described in terms of the coordinates introduced by Kumar
et al.45 and illustrated in Fig. 2. We use the (R, β) defi-
nition of Luzar and Chandler,46 which defines a hydrogen
bonded pair as one with R < 3.5 Å and β < 30◦. We contrast
this intuitive definition with the one based on charge transfer
between the oxygen lone pair and the OH antibonding orbital.
Kumar et al.45 used electronic structure theory to define hydro-
gen bonding based on the occupancy of the OH antibonding
orbital. They mapped this occupancy to the nuclear coordinates
(r, ψ) (Fig. 2) and identified a pair of molecules as hydrogen
bonded if

exp(−r/0.343 Å)(7.1−0.050ψ + 0.000 21ψ2) > 0.0085, (2)

with ψ ∈ [0◦, 90◦].45 Finally, we use an (r, R) definition to
allow comparison with the work of Pártay and Jedlovszky.26

FIG. 2. The intermolecular coordinates used to describe different hydrogen
bonding definitions. R is the OO distance, r is the OH distance, β is the
OOH angle, and ψ is the angle between the intermolecular OH vector and the
acceptor molecule normal.

FIG. 3. The ratio of the cluster correlation length ξ to the linear system size
L as a function of the density ρ at 1.05 T c using the (R, β) hydrogen bond
definition (see the text). The intersection of the curves for different system
sizes (colors) gives the critical percolation density.

They define a pair of molecules as hydrogen bonded if
r < 2.5 Å and R < 3.5 Å.

We find the percolation threshold in the (ρ, T ) plane by
performing NVT simulations along isotherms. For each tem-
perature, the critical density is where ξ/L is independent of
system size (Fig. 3). We compute the critical density by a lin-
ear extrapolation between simulated points. Figure 3 shows
three different system sizes with 500 water molecules, 1328
water molecules, and 4024 water molecules. For two system
sizes L, L′, the estimate of the critical density becomes exact as
the two system sizes L, L′→∞. With several different pairs of
sizes L, L′, one can extrapolate to the infinite-size limit using
the Nightingale formula.44 We find that a Nightingale extrap-
olation is unnecessary, however, because the critical density
varies by less than 0.01 g/ml for all three pairs of sizes. Indeed,
the intersection of all three curves ξ/L appears to occur at the
same point in Fig. 3. The extra simulation time required to per-
form a Nightingale extrapolation would be significant, and the
change in the critical density would be small. Furthermore, we
are interested in qualitative comparisons between the critical
percolation density and the Widom line, which does not require
extremely accurate critical densities. For all other percolation
calculations, we therefore simulate only the two smallest sizes
(N = 500 and N = 1328).

The error on the correlation length ξ is given by the 95%
confidence interval of a 1000-sample bootstrap distribution.47

The intersection of the upper error bars for the smaller sys-
tem (N = 500) with the lower error bars for the larger system
(N = 1328) defines the upper error of the critical density. The
opposite combination defines the lower error of the critical
density. These intersections are found by linear extrapolation,
as for the critical density itself.

III. RESULTS
A. Phase diagram of supercritical water

The phase diagram of supercritical water, in both the (P, T )
and (ρ, T ) planes, is shown in Fig. 4. In line with previous
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FIG. 4. The phase diagram for supercritical E3B3 water in the temperature-
density plane (top panel) and pressure-temperature plane (bottom panel).34

In both diagrams, the critical point is indicated by an open circle. The critical
point for E3B3 water is at 0.34 g/ml, 143 bars, and 626 K.34 The Widom
line (×) is an extrapolation of the coexistence line in the (P, T ) plane; in the
(ρ, T ) plane, it is an extrapolation (dotted line) of the binodal diameter line
(dashed line, see the text). The coexistence line in the (ρ, T ) plane is that of
the E3B3 model.34 The coexistence line in the (P, T ) plane is a schematic
based on experimental results meant for illustration only.48 The location of
the percolation transition depends on the hydrogen bonding definition used
(colored points). The hydrogen bonding definitions are described in Sec. II C.
For any reasonable hydrogen bonding definition, the percolation transition is
distinct from the Widom line.

work, we find that the isobaric Widom line (×) extrapolates
the liquid-vapor coexistence curve in the (P, T ) plane.5,7 It
is interesting to note that in the (ρ, T ) plane, this Widom line
appears to extrapolate the binodal diameter line (dashed/dotted
black line, Fig. 4). The binodal diameter is the average
density of the coexisting liquid and gas phase at a given
temperature.

We now turn to the percolation transition. For the three
hydrogen bonding definitions described in Sec. II C, the perco-
lation line is clearly distinct from the Widom line. The location
of the percolation line depends sensitively, however, on the
choice of hydrogen bonding definition. The three definitions
considered lead to different amounts of hydrogen bonding
for a given density and temperature, ranging from the most
lenient definition (r, R) with the most hydrogen bonds to the
most strict definition (r, ψ). It follows, then, that at a given

temperature, the critical percolation density would be small-
est for the former and largest for the latter, as indicated in
Fig. 4.

An extreme example further demonstrates the ambiguity
in the choice of hydrogen bond definition. Consider a naive
hydrogen bonding definition based only on the intermolecular
OO distance R. A pair of molecules can be defined as “hydro-
gen bonded” if R is less than some cutoff value Rcut. By tuning
the value of Rcut, one can continuously tune the critical perco-
lation density and choose a value of Rcut so that the Widom line
and the percolation line coincide. In the E3B3 water model,
Rcut = 3.5 Å yields a percolation line that is indistinguishable
from the Widom line (green circle, Fig. 4). This is a very lenient
hydrogen bond definition, however, which counts many struc-
tures as hydrogen bonded that do not satisfy other definitions
or our intuition. For example, two water molecules with their
hydrogen atoms pointed away from each other will be “hydro-
gen bonded” according to this R definition if they are within
3.5 Å.

On top of this ambiguity in the percolation line for dif-
ferent hydrogen bond definitions, the location of the Widom
line also depends on the choice of the susceptibility used to
define it and the path through the phase diagram.6–10 Here we
define the Widom line using the compressibility along iso-
bars (Sec. II B). Corradini et al.7 showed that Widom lines
in supercritical water based on the heat capacity or thermal
expansion coefficient are at slightly higher densities and pres-
sures. This moves the Widom line closer to the percolation
transition, but the change is very small and does not impact
our conclusions. Defining the Widom line using isotherms
instead of isobars yields a Widom line that is at lower den-
sities and pressures (data not shown) in agreement with the
results of Schienbein and Marx.10 This moves the Widom line
further from the percolation lines, so it does not affect our
conclusions.

Even though the quantitative location of the percolation
line depends on the choice of hydrogen bond definition, Fig. 4
still clearly demonstrates that for any reasonable hydrogen
bond definition, the percolation transition is at higher density
and pressure than the Widom line. This conclusion contradicts
the results of Pártay and Jedlovszky26 and Bernabei et al.27 The
discrepancy can probably be attributed to three factors: First,
due to computational limitations, both groups studied a com-
bined total of only 12 points in (P, T, ρ) space, compared to 336
in this study. This sparsity in (P, T, ρ) space made it difficult
to pin down the location of the percolation transition relative
to the Widom line precisely. Second, Pártay and Jedlovszky26

used the (r, R) hydrogen bond definition, which is the most
lenient of the “real” hydrogen bond definitions we consider,
yielding a percolation line that is quite close to the Widom
line (purple circle, Fig. 4). In our simulations, we are able to
distinguish this percolation line from the Widom line, but this
distinction is outside the resolution of Pártay and Jedlovszky.
Finally, Refs. 26 and 27 used spanning cluster and cluster size
distribution methods to find the critical percolation density.
These methods do not account for finite-size effects, making
it more difficult to precisely locate the percolation transition.

As discussed in the Introduction, if one regards the Widom
line as the separatrix between a gas-like and liquid-like state



084504-5 Strong, Shi, and Skinner J. Chem. Phys. 149, 084504 (2018)

in the supercritical phase, then one should expect the liquid-
like hydrogen bond network to break down as one crosses the
Widom line. This is not what we observe (Fig. 4). To under-
stand this discrepancy, in Sec. III B, we study the connectivity
of the hydrogen bond network.

B. Connectivity and cluster statistics

The simplest descriptor of connectivity is the average
number of hydrogen bonds per water molecule nHB. We use
a molecule-centric definition of nHB, which is double-counted
from the bond-centric perspective,

nHB =
1
N

∑
i,j

bij, (3)

where N is the number of water molecules and bij is unity if
molecules i and j are directly connected by a hydrogen bond
and zero otherwise. The value of nHB depends on the tem-
perature, density, and the hydrogen bond definition (Fig. 5).
Strikingly, the percolation transition (colored points, Fig. 5)
happens at a fixed value of nHB, independent of the values of
these parameters or hydrogen bond definition. For E3B3 water,
the percolation transition happens at the critical value of n∗HB
= 1.63. Blumberg et al.49 found that for ST2 water, the per-
colation transition is at n∗HB = 1.53. Blumberg et al. relate this
off-lattice percolation problem to the simpler random-bond
percolation theory on a regular lattice by equating the critical
probability pc in percolation theory to n∗HB using the number
of nearest neighbors z: n∗HB = zpc. On the regular ice Ih lattice,
z = 4, and pc = 0.388,50 yielding n∗HB = 1.55.49,51 The ST2 water
model has been criticized for being too ice-like,49,52,53 so it is
perhaps not surprising that the difference between n∗HB in ST2

FIG. 5. The average number of hydrogen bonds per water molecule nHB in
simulations of E3B3 water, over a range of densities at T = 1.1T c. The hydro-
gen bond definition, density, and temperature (not shown) control the average
number of hydrogen bonds (solid lines). For each definition, and a range of
temperatures, the percolation densities are indicated by the colored points.
The percolation transition happens at a fixed value of nHB, regardless of the
temperature and hydrogen bonding definition.

versus an ice lattice is smaller than the difference between n∗HB
in E3B3 water versus an ice lattice.

The universality of n∗HB with respect to both thermody-
namic state point and hydrogen bond definition indicates that
nHB is playing the role of the bond probability p in percolation
theory. In percolation theory, the critical probability pc is a
fundamental property of the lattice structure and connectivity,
and there is no concept of temperature or thermodynamics.
Likewise, here, we find that n∗HB is independent of tempera-
ture, density, and hydrogen bond definition, so the network
that describes the water structure must also be independent of
these parameters. In other words, the percolation transition is
a geometric one, defined by connectivity, not thermodynam-
ics. The Widom line, on the other hand, is a thermodynamic
concept: it is defined in terms of thermodynamic suscepti-
bilities, which are derivatives of the free energy. Thermody-
namic variables like the temperature and pressure tune the
system through transitions described by the free energy, like
the liquid-vapor phase transition, the critical point, and the
Widom line. The same thermodynamic variables tune the value
of nHB (Fig. 5) which controls percolation in the system, but
the critical value n∗HB is not controlled by the free energy. It
is controlled by the geometry of the underlying network on
which hydrogen bonds are broken and formed. This distinction
between the geometric percolation transition and the thermo-
dynamic Widom line is more stark in terms of the clustering
statistics.

The cluster probability PM (ρ) = MnM (ρ)/N is the proba-
bility that a molecule chosen at random is part of a cluster of
size M, where nM (ρ) is the average number of clusters of size
M at a given density ρ.49 Like nHB, PM (ρ) depends on the tem-
perature, density, and hydrogen bond definition. When plotted
as a function of nHB instead of ρ, however, the curves PM

collapse onto a single master curve regardless of temperature
and hydrogen bond definition (Fig. 6). Following the work of
Blumberg et al.,49 we demonstrate that these master curves are
well described by the predictions of random-bond percolation
theory on an ice Ih lattice (black lines, Fig. 6).

While the regular ice lattice does a decent job describing
both n∗HB and the form of PM , the comparison can only go so
far. In the ice lattice, each site has exactly 4 nearest neighbors
(z = 4). This is not true in fluid water, where the number of
“nearest neighbors,” or possible hydrogen bond partners, of a
given molecule fluctuates in time. Furthermore, the long range
order in ice is absent in fluid water. Fluid water is better imag-
ined as a random network with short range tetrahedral order. In
the context of percolation theory, a random network is simply
a collection of points that are connected in an irregular, “ran-
dom” way. For regular lattices, with a well-defined number of
nearest neighbors z, the Galam-Mauger formula approximates
the percolation threshold pc from z and the dimensionality
d by

pc = p0

(
d

(d − 1)(z − 1)

)a

, (4)

with p0 = 0.7541 and a = 0.9346 for random-bond percolation
theory.54 In a random network, the number of nearest neigh-
bors is the number of connections that a given site makes.
Depending on the procedure used to define connectivity, each
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FIG. 6. The probability PM that a randomly chosen molecule belongs to a
cluster of exactly M molecules, for M = 1, 2, and 6 (see the text). The points
and crosses correspond to the (R, β) and (r, ψ) hydrogen bond definitions,
respectively (see Sec. II C). The colors correspond to a range of temperatures
linearly spaced from 1.05T c (dark blue) to 1.2T c (dark red). The probabil-
ity PM depends only on nHB, not on temperature, density, or the hydrogen
bond definition. The dependence on nHB is well described by random-bond
percolation theory on an ice lattice (black lines).49

point may have a fixed number of nearest neighbors, as in the
case of various Voronoi schemes,55 or there may be a distri-
bution of nearest neighbor numbers, like in water, in which
case z is the average number of nearest neighbors of each
site.

The Galam-Mauger formula [Eq. (4)] has been criticized
for its failure to meet several intuitive criteria (e.g., 0 < pc

< 1),56 as well as its failure for lattices in different univer-
sality classes.57,58 Alternatives have been suggested which fix
these flaws, but these do not provide intuitive measures of
the structure of a lattice, like z in the Galam-Mauger for-
mula.59 To demonstrate that the Galam-Mauger formula is
adequate for our purposes, we compare its predictions to
percolation thresholds on various random networks (Fig. 7).
As a baseline, we first compare to regular 3d regular lat-
tices since our system has d = 3. The 3d lattices in Fig. 7
are (8,3),60 simple cubic,61 ice Ih,50 diamond,62 face-centered
cubic,61,62 and body-centered cubic.61,62 The (m, n) notation
used to describe the (8,3) lattice indicates a lattice with n near-
est neighbors and m members in the smallest closed loop.60

We then compare Eq. (4) to percolation thresholds in ran-
dom networks. Since there are very limited results available
for 3d random networks, we also compare to 2d random net-
works. The 3d random network is a Voronoi network,63 and

FIG. 7. The percolation transitions pc for various regular 3d lattices (blue), as
well as a 3d (orange) random network and 2d (yellow) random networks (see
text). Both the random networks and regular lattices follow the Galam-Mauger
formula [black line, Eq. (4)] that relates the critical percolation threshold to
the average number of nearest neighbors z and the system dimension d. In
our system, the Galam-Mauger formula predicts that the average number of
nearest neighbors is z = 3.55 (dotted lines).

the 2d random networks are a relative-neighborhood graph,64

a Voronoi tessellation,65 a Voronoi covering,65 a Delauney
triangulation,65 and a Gabriel graph.66 Having established that
Eq. (4) holds for random networks, we apply it to the hydrogen
bonding network in water. Here, pc = n∗HB/z, n∗HB = 1.63, and
d = 3, so the solution of Eq. (4) is z = 3.55. This implies that
fluid water can be thought of as a random network with an
average of 3.55 nearest neighbors or potential hydrogen bond-
ing partners. The number of hydrogen bonds that are actually
occupied (nHB) is determined by the density, temperature, and
hydrogen bond definition.

Assuming that the structure of the underlying network in
ambient liquid water is similar to that in supercritical water,
one could argue that at room temperature all of these 3.55
hydrogen bonds are occupied. In dense liquid water, almost
every molecule is part of the percolating cluster. In the context
of percolation theory, this corresponds to a bond probability
p ∼ 1. In this limit, the value of nHB at room temperature
corresponds to the average number of nearest neighbors in
the network (so nHB ∼ z), and, to the extent that the above
assumption holds, this is the same network that describes the
percolation transition in the supercritical state. So, by measur-
ing z = 3.55 via Eq. (4), one could conclude that nHB ∼ 3.55 in
room temperature water. This is consistent with various esti-
mates (3.4–3.7) of nHB in simulations of liquid water.45 The
assumption that the network structure of the room temperature
liquid is similar to the supercritical fluid may seem unreason-
able, but there is some evidence to support it: First, as dis-
cussed and shown above, percolation theory is independent of
thermodynamics. Since there are no discontinuous phase tran-
sitions separating the percolation transition in the supercritical
fluid from the ambient liquid, one might expect the network
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structure to remain relatively unchanged. Second, Blumberg
et al.49 showed that the same percolation transition, which we
study in supercritical water, can alternatively be studied using
liquid water at ambient conditions and simply varying the
hydrogen bond definition parameters (e.g., Rcut) continuously
to tune nHB through the percolation transition.

Note that the concept of water as a random network is
only relevant at relatively high densities near and above the
percolation transition. At low densities, clearly, there is no
network that describes water’s structure because the hydrogen
bonds that uphold this structure are short ranged. Percolation
theory is blind to such considerations because the connec-
tions between points on a network need not have a physical
meaning.

C. Water models

All the results above use the E3B3 water model.34 Here,
we compare with TIP4P/200567 and E3B268 water models
to explore the sensitivity of our results to different simula-
tion models. The E3B2 and E3B3 models include explicit
three-body terms in the potential. The TIP4P/2005 model is a
pairwise potential and is the two-body reference on which the
E3B3 model is based. We use these models to understand the
importance of three-body interactions near the critical point,
where the lower density and the long length scale fluctua-
tions might permit exotic structures that are not present in
the liquid. For example, one might imagine chains of hydro-
gen bonded molecules, each accepting one hydrogen bond and
donating another.69,70 These would be energetically favorable
due to the cooperativity of hydrogen bonding but entropically
suppressed.71 These structures are impossible in liquid water
because each water molecule forms more than 3 hydrogen
bonds on average,45 meaning that any cooperative hydro-
gen bonds are accompanied by anticooperative ones as well.

FIG. 8. The temperature-density phase diagram showing the Widom line (×)
and the (r, ψ) percolation transition (colored points, Sec. II C) for several
different water models. In terms of the reduced temperature T /T c and reduced
density ρ/ρc, the location of the percolation transition depends quantitatively,
but not qualitatively, on the choice of water model. The boundaries of the
liquid-vapor coexistence regions for the various water models are solid lines,
and the critical point is indicated by unfilled circles. The experimental liquid-
vapor coexistence region (black) is shown for comparison.72,73

Actually, we find little evidence of these structures in our
simulations presumably due to the high temperature near the
critical point and the weakness of the three-body interactions
in E3B3.34

Furthermore, although the location of the percolation line
depends on the hydrogen bond definition used (Fig. 4), it is
relatively insensitive to the water model chosen (Fig. 8). The
other results presented above also hold with the E3B2 and
TIP4P/2005 water models, except that the critical value of nHB

changes slightly. For E3B2, n∗HB = 1.61, and for TIP4P/2005,
n∗HB = 1.65.

IV. CONCLUSION

We find that the percolation transition of the hydrogen
bonding network in supercritical water depends on the hydro-
gen bond definition used. For any reasonable choice of hydro-
gen bond definition, however, the percolation transition is
distinct from the Widom line. This means that the Widom
line does not separate a “gas-like” supercritical fluid from a
“liquid-like” one, at least from the perspective of the hydro-
gen bonding network. This result was anticipated32 by a simple
comparison of the value of nHB at the Widom line with n∗HB
estimated by Blumberg et al.49 But perhaps, we should not
even expect the Widom and percolation lines to coincide. The
Widom line is a thermodynamic phenomenon. It is described
in terms of derivatives of the free energy that diverge at the
nearby critical point and phase coexistence line. Percolation,
on the other hand, is a purely geometrical phenomenon that
depends only on the connectivity of the system. While the
average number of hydrogen bonds nHB does depend on the
thermodynamic state, the percolation transition happens at the
same critical value n∗HB, regardless of temperature, density, or
hydrogen bond definition. The critical value n∗HB is analogous
to the critical probability pc in percolation theory and is a fun-
damental property of the lattice or network. This percolation
threshold in supercritical water therefore contains useful infor-
mation, surprisingly, about the hydrogen bonding network of
room temperature liquid water.
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L. G. M. Pettersson, and A. Nilsson, “The structure of the first coordination
shell in liquid water,” Science 304, 995–999 (2004).

70F. Weinhold, “Quantum cluster equilibrium theory of liquids: Illustrative
application to water,” J. Chem. Phys. 109, 373–384 (1998).

71R. Kumar and J. L. Skinner, “Water simulation model with explicit three-
molecule interactions,” J. Phys. Chem. B 112, 8311–8318 (2008).

72A. Saul and W. Wagner, “A fundamental equation for water covering the
range from the melting line to 1273 K at pressures up to 25000 MPa,”
J. Phys. Chem. Ref. Data 18, 1537–1564 (1989).

73W. Wagner, A. Saul, and A. Pruss, “International equations for the pres-
sure along the melting and along the sublimation curve of ordinary water
substance,” J. Phys. Chem. Ref. Data 23, 515–527 (1994).

https://doi.org/10.1103/physreve.57.230
https://doi.org/10.1007/s11467-013-0403-z
https://doi.org/10.1088/0022-3719/17/19/017
https://doi.org/10.1103/physreve.87.042106
https://doi.org/10.1103/physreve.80.041101
https://doi.org/10.1088/1751-8113/40/31/005
https://doi.org/10.1063/1.2121687
https://doi.org/10.1063/1.3587053
https://doi.org/10.1126/science.1096205
https://doi.org/10.1063/1.476574
https://doi.org/10.1021/jp8009468
https://doi.org/10.1063/1.555836
https://doi.org/10.1063/1.555947

