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ABSTRACT
Electron–phonon coupling plays a central role in the transport properties and photophysics of organic crystals. Successful models describing
charge- and energy-transport in these systems routinely include these effects. Most models for describing photophysics, on the other hand,
only incorporate local electron–phonon coupling to intramolecular vibrational modes, while nonlocal electron–phonon coupling is neglected.
One might expect nonlocal coupling to have an important effect on the photophysics of organic crystals because it gives rise to large fluctua-
tion in the charge-transfer couplings, and charge-transfer couplings play an important role in the spectroscopy of many organic crystals. Here,
we study the effects of nonlocal coupling on the absorption spectrum of crystalline pentacene and 7,8,15,16-tetraazaterrylene. To this end, we
develop a new mixed quantum–classical approach for including nonlocal coupling into spectroscopic and transport models for organic crys-
tals. Importantly, our approach does not assume that the nonlocal coupling is linear, in contrast to most modern charge-transport models. We
find that the nonlocal coupling broadens the absorption spectrum non-uniformly across the absorption line shape. In pentacene, for example,
our model predicts that the lower Davydov component broadens considerably more than the upper Davydov component, explaining the ori-
gin of this experimental observation for the first time. By studying a simple dimer model, we are able to attribute this selective broadening to
correlations between the fluctuations of the charge-transfer couplings. Overall, our method incorporates nonlocal electron–phonon coupling
into spectroscopic and transport models with computational efficiency, generalizability to a wide range of organic crystals, and without any
assumption of linearity.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021731., s

I. INTRODUCTION

Absorption and photoluminescence spectroscopies are power-
ful techniques for interrogating the electronic structure of conju-
gated organic materials. Spectral shifts, vibrionic peak ratio changes,
and line broadening all provide information about the sign and
magnitude of the exciton coupling, the curvature and width of the
exciton band, the exciton coherence length, and the disorder within
the system.1,2 Over the past several decades, significant effort has
been devoted to develop a comprehensive understanding of these
spectroscopic signatures, with a great deal of success.1–8

One of the main challenges in modeling conjugated organic
systems is the importance of electron–phonon coupling,8–12 which
is commonly divided into two types: local and nonlocal.12 Local
electron–phonon coupling is the modulation of the electronic
Hamiltonian by predominately intramolecular phonons, while non-
local (Peierls) electron–phonon coupling is the modulation of the
electronic Hamiltonian by predominately lattice phonons. Both
types are important for accurate descriptions of excited states
in organic systems, and several model Hamiltonians have been
devised to account for these effects: Holstein models describe
local electron–phonon coupling,13,14 Su–Schrieffer–Heeger models
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describe nonlocal electron–phonon couplings,15 and extended Hol-
stein models describe both simultaneously.16–18 In terms of spec-
troscopy, local vibronic coupling is responsible for the pronounced
∼1400 cm−1 vibronic progression observed in the optical response
of many conjugated organic systems and is routinely incorporated
in spectroscopic models. However, far less attention has been paid to
the role that nonlocal electron–phonon coupling plays in the optical
response.

Several works have shown that nonlocal electron–phonon cou-
pling gives rise to large fluctuations in the charge-transfer (CT)
couplings within organic systems on the order of their average val-
ues.19–23 This phenomenon arises from the facts that (1) optical
lattice phonons have energies well below kBT at room tempera-
ture24 (in contrast with inorganic systems25) and (2) the CT cou-
plings are very sensitive to molecular packing; displacements on the
order of the carbon–carbon bond length can dramatically alter the
magnitude and sign of these quantities.26,27

The majority of work considering nonlocal electron–phonon
coupling has focused on its important role in charge transport,
where it results in charge carrier localization and limits carrier
mobility.11,12,23,28–33 The same CT couplings that are perturbed

by the nonlocal electron–phonon coupling, however, also play an
important role in the spectroscopic response of many organic sys-
tems. In closely packed organic crystals, for example, the optically
bright Frenkel excitons couple through a short-ranged, CT medi-
ated “superexchange” mechanism.34,35 This implies that the spec-
troscopy of organic crystals should also be sensitive to fluctuations in
the CT couplings.21,22,36–38 Surprisingly, however, absorption spec-
tra of many organic crystals can be successfully modeled without
including nonlocal electron–phonon coupling (Ref. 2 and citations
within).

To resolve this apparent discrepancy, we develop a new method
for modeling the spectroscopy of organic crystals that incorporates
nonlocal electron–phonon coupling in addition to the other com-
mon ingredients of spectroscopic models: Frenkel excitons, CT exci-
tons, and local electron–phonon coupling. The method is based on
a mixed quantum–classical approach that treats the low-frequency
phonon modes classically via molecular dynamics (MD) simula-
tions, while the high-frequency intramolecular vibrations and elec-
tronic degrees of freedom are treated quantum-mechanically using
a Holstein-style Hamiltonian. We parameterize the Hamiltonian at
each time step according to the MD trajectory using a mapping

FIG. 1. TAT (a) forms pillars in its crystalline state [(b) and (c)].41 Panel (b) is a view down these pillars, roughly along the lattice a-direction. Panel (c) highlights the
molecules in one pillar. Pentacene (d) forms a crystal with a herringbone structure in the crystallographic ab-plane (e) and a layered structure in the c-direction (f).40 The two
molecules in one unit cell and their periodic images along the lattice c-direction are highlighted in panel (f) to guide the eye. The x- and y-axes in panels (a) and (d) define
the molecular coordinate system used to describe the geometry of a pair of molecules in the spectroscopic map. The axes in panels (b), (c), (e), and (f) are the crystalline axes.
The molecules labeled in panel (e) illustrate the nomenclature we use to classify the four different types of neighbors in pentacene: roi = ±( 1

2 , 1
2 , 0), roj = ±( 1

2 ,− 1
2 , 0),

rok = ±(1, 0, 0), and roℓ = ±(0, 1, 0).
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approach to make repeated evaluation of the CT couplings com-
putationally tractable. Both the mixed quantum–classical approach
and the map are similar in spirit to approaches used to model the
vibrational spectroscopy of condensed phases.39 Importantly, our
approach allows for the treatment of nonlocal electron–phonon
couplings very generically and can account for arbitrarily complex
dependence of the couplings on the intermolecular structure. In par-
ticular, it is not necessary to make the common assumption that the
nonlocal electron–phonon coupling is linear.

We apply our method to understand the effects of nonlo-
cal electron–phonon coupling on the absorption spectroscopy of
organic crystals. We focus on two specific systems that exhibit dif-
ferent packing motifs: pentacene, which packs in a herringbone
structure,40 and 7,8,15,16-tetraazaterrylene (TAT), which exhibits
a slipped π-stacking structure (Fig. 1).41,42 We chose these sys-
tems for four reasons: First, because CT couplings are known to
play an important role in the spectroscopy of both systems, mak-
ing them susceptible to nonlocal electron–phonon couplings like
those we consider here.43,44 Second, to evaluate the effects of non-
local coupling between systems with different packing motifs and
therefore different nonlocal coupling forms and strengths. Third,
the absorption spectroscopy of both systems has previously been
modeled in the absence of nonlocal coupling, so significant param-
eterization efforts are not required.43,44 Finally, because these and
related systems have received considerable attention as promising
organic semiconductors.7–9,45 We find that both systems exhibit sig-
nificant fluctuations in the CT and total excitonic coupling due to
nonlocal electron–phonon coupling, in agreement with the previ-
ous results.19–23 These fluctuations broaden the absorption spec-
trum, but interestingly, the broadening is not uniform. We find
that this nonuniformity is due at least in part to correlations in
the electron-transfer and hole-transfer couplings. This is most obvi-
ous for pentacene where the ∥a-polarized lower Davydov compo-
nent broadens six times more than the �a-polarized upper Davydov
component.

II. METHODS
A. Model Hamiltonian

Our model is motivated by a separation in energy scales. In
organic crystals, the intermolecular degrees of freedom oscillate
at much lower frequencies than the intramolecular and electronic
degrees of freedom due to the weak van der Waals forces that hold
the crystals together. With this in mind, we separate the Hamiltonian
into a classical part Hcls that accounts for low-frequency intermolec-
ular vibrations and a quantum mechanical part Ĥqm that accounts
for the high-frequency degrees of freedom.31,46–48

The quantum-mechanical part of the Hamiltonian is Holstein-
like and includes Frenkel excitons, CT excitons, and vibronic
coupling,

Ĥqm = ĤFE + ĤCT + Ĥvib. (1)

Here, ĤFE represents the Frenkel exciton Hamiltonian

ĤFE = ∑
i
(ES1 + Δ0−0)B†

i Bi +∑
i≠j

J(qNi ,qNj )B
†
i Bj, (2)

where i and j label the molecules in the crystal and the operator B†
i

(Bi) creates (annihilates) a Frenkel exciton on molecule i. The first
sum in ĤFE accounts for the energy of a localized Frenkel exciton; ES1

is the excitation energy for the S1 ← S0 transition for a molecule in
dilute solution, andΔ0−0 is the solution-to-crystal shift that accounts
for non-resonant interactions within the crystal. The second term in
ĤFE accounts for long-range Coulombic coupling between excitons
at sites i and j, J(qNi ,qNj ), where qNi is the 3N dimensional vector of
the atomic coordinates of molecule i and N is the number of atoms
in molecule i.

The second term in Eq. (1) is the CT Hamiltonian

ĤCT = ∑
i≠j

ECT(qNi ,qNj )c
†
i cid

†
j dj +∑

i≠j
te(qNi ,qNj )c

†
i cj

+∑
i≠j

th(q
N
i ,qNj )d

†
i dj, (3)

where the operator c†i (ci) creates (annihilates) an electron on
molecule i and the operator d†

i (di) creates (annihilates) a hole on
molecule i. The energy of a CT exciton with the electron localized to
molecule i and the hole localized to molecule j is represented by

ECT(qNi ,qNj ) = IP − EA + P + V(qNi ,qNj ). (4)

This energy depends on the atomic positions of the host chro-
mophores i and j through the Coulomb binding energy V(qNi ,qNj ).
The ionization potential IP, electron affinity EA, and polarization
energy P also enter into the expression for ECT, but we approxi-
mate these terms to be independent of the coordinates of the host
molecules. The second and third sums in ĤCT account for short-
range CT coupling with te(qNi ,qNj ) and th(qNi ,qNj ) representing the
electron-transfer and hole-transfer couplings between sites i and
j, respectively. These terms couple the Frenkel and CT states and
control charge hopping within the CT manifold.

The third term in Eq. (1) accounts for the high-frequency
intramolecular vibrations responsible for the vibronic progression
observed in the absorption spectrum,

Ĥvib = h̵ωvib∑
i
b†
i bi + h̵ωvib∑

i
{λ(b†

i + bi) + λ2
}B†

i Bi

+ h̵ωvib∑
i≠j
{λe(b†

i + bi) + λh(b
†
j + bj) + λ2

h + λ2
e}c

†
i cid

†
j dj.

(5)

Here, the operator b†
i (bi) creates (annihilates) a vibrational quantum

on chromophore i with energy h̵ωvib. The first summation therefore
describes the vibrational energy of each molecule. The final three
terms account for the local electron–phonon coupling of the exci-
ton, electron, and hole to the intramolecular vibration. The Huang–
Rhys factors λ2, λ2

e , and λ2
h describe the shift in the nuclear potential

relative to the ground state when the molecule hosts a Frenkel exci-
ton, electron, and hole, respectively. In principle, all intramolecular
vibrational modes can be accounted for, but this is prohibitively
expensive for all but the simplest molecules. Instead, we treat the
numerous closely spaced modes that contribute to the vibronic pro-
gression empirically using a line width that depends on the num-
ber of vibrational quanta in the absorbing state, as discussed by
Yamagata et al.43
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Nonlocal electron–phonon coupling enters the Hamiltonian
classically through the time-dependent fluctuations in the atomic
coordinates. That is, in Eqs. (1)–(5), qNi → qNi (t). We model
these fluctuations using MD simulations of the crystal. As discussed
above, this corresponds to a separation of the Hamiltonian into
the quantum mechanical one given in Eq. (1) and the classical
Hamiltonian

Hcls = ∑
α

p2
α

2mα
+ U({q}), (6)

where pα is the momentum conjugate to atomic coordinate qα, mα
is the mass of particle α, and U({q}) is the potential used in the MD
simulation (Sec. II B), which is, in principle, a function of the set
of all the coordinates {q}. Here, the sum over α goes over atoms,
not molecules. We then use various ab initio techniques and the
mapping approach developed in Sec. III A 1 to compute the qNi -
dependent quantities in the Hamiltonian [Eq. (1)]. If the coordi-
nates {q} are instead static and taken from an experimental crys-
tal structure, the quantum mechanical Hamiltonian reduces to the
time-independent one used in previous work to model the optical
properties of many different organic crystals.2

In reality, all of the quantities appearing in the quantum
mechanical Hamiltonian depend on atomic coordinates and there-
fore fluctuate in time. However, we neglect the time-dependence of
the terms not explicitly expressed as a function of qNi in Eqs. (1)–(5)
(ES1 − Δ0−0, λ, λe, λh, ωvib) under the assumption that their fluctu-
ations are small, and the spectroscopy can be adequately described
using average values.

While many authors have included nonlocal electron–phonon
couplings in tight-binding Hamiltonians such as Eq. (1),12,16–18 our
approach is unique because it is able to handle nonlocal electron–
phonon couplings of arbitrary form. Typically, these couplings are
treated in the linear response regime, assuming that lattice dis-
tortions are small enough that the electronic Hamiltonian is per-
turbed linearly. Troisi and co-workers have also computed electron–
phonon couplings without any assumptions of linearity,19–23 but to
our knowledge, these calculations have not yet been incorporated
into tight-binding approaches due to computational limitations. In
organic crystals, nonlinear effects in nonlocal electron–phonon cou-
plings may be important due to the sensitivity of the CT couplings
to small geometric displacements. The mixed quantum–classical
method used here includes nonlocal electron–phonon coupling in a
tight-binding Hamiltonian explicitly without the usual assumption
of linearity.

To calculate the absorption spectrum, we represent the time-
dependent Hamiltonian Ĥqm(t) using a two-particle basis set,49

truncated to include only states with less than vmax vibrational
quanta. The maximum electron–hole separation is not restricted,
except by the size of the simulated supercell. We then compute the
polarized absorption spectrum using the Fourier transform of the
transition-dipole autocorrelation function Cμ(t),

A(ω) ∝ ω Re∫
∞

0
dt e−iωtCμ(t),

Cμ(t) = ⟨ε ⋅ μ(t + t0) exp+ { −
i
h̵ ∫

t

t0
dτ Ĥqm(τ + t0)

− Γ̂(τ + t0)}ε ⋅ μ(t0)⟩
t0

. (7)

Here, exp+ is a time-ordered exponential, μ(t) contains the S1 ← S0
transition dipole moments of the basis states at time t, ε is the polar-
ization vector of the incoming light, Γ̂(t) is a matrix of eigenstate-
dependent line broadening parameters, which depends on the num-
ber of vibrational quanta in each eigenstate of Hqm(t) (see Sec. S5
of the supplementary material),43 and ⟨⋯⟩t0 is an average over ini-
tial time points of the MD trajectory. Each spectrum is averaged
over Nsamp initial time points t0 separated by Tsamp (see Table S7
of the supplementary material). The time-dependence of the tran-
sition dipole moments arises due to fluctuations in the molecular
orientations according to Hcls. We solve Eq. (7) using the numerical
integration of the Schrödinger equation approach.50,51

B. Molecular dynamics simulations
We perform MD simulations of TAT and pentacene using

the LAMMPS, Visual Molecular Dynamics, and TopoTools pack-
ages.52–54 We model the intra- and intermolecular potentials using
the DREIDING force field55 with atomic charges taken from elec-
tronic structure calculations (see Sec. S1 of the supplementary mate-
rial).56–58 This force field reproduces experimental crystal structures
in similar systems.59

The MD simulations are performed at constant number of par-
ticles, volume, and energy (NVE) and use a rRESPA multi-timescale
integrator60 to accommodate the fast intramolecular motions (see
Sec. S1 of the supplementary material). The TAT simulations are
initialized in the crystal structure given by Fan et al.,41 and the
pentacene simulations are initialized in the crystal structure given
by Holmes et al.40 We simulate a 10 × 2 × 2 supercell of TAT
(80 molecules) and a 4 × 4 × 2 supercell of pentacene (64 molecules).
The dimensions of the supercells are chosen to be at least as large as
twice the cutoff for the short-range interactions in the MD simu-
lation and large enough to avoid finite size effects in the absorption
spectra. Each simulation is equilibrated for 10 ps during which veloc-
ities are rescaled every 1 ps to maintain a temperature of 298 K.
To compute the distribution of intermolecular geometries and cou-
plings, we average over 1 ns of simulation time, collecting data every
1 ps. To compute the spectra, we evaluate the Hamiltonian every 2 fs
for 100 ps.

III. RESULTS AND DISCUSSION
While the time-dependent quantities in Eqs. (1)–(5) may be

calculated directly from the atomic coordinates derived from MD
simulations using standard ab initio approaches,20,21 modeling the
spectroscopy of organic crystals in this way would require millions of
such calculations because they must be repeated for each molecule,
or a pair of molecules, at every time step. These requirements make
such calculations nearly prohibitive and at least impractical for many
applications. To render this approach practical and generalizable,
we develop a map to estimate the values of the time-dependent
quantities in the Hamiltonian (ECT, J, te, and th) for any realis-
tic set of atomic coordinates, without the need for repeated elec-
tronic structure calculations. As discussed previously, this approach
is motivated by similar methods that are used to model the infrared
spectroscopy of condensed phases39 and represents one of the main
contributions of the current work.
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For the CT energies ECT and the Coulomb couplings J, relatively
simple relationships between the atomic coordinates and the elec-
tronic properties have already been developed. The CT couplings,
on the other hand, are complex functions of the overlap between the
frontier molecular orbitals of both chromophores involved, which
are often oscillatory structures with many nodal surfaces.2,12,26 While
a similar mapping approach was recently used to account for diag-
onal disorder in organic semiconductors,47 the concept has not, to
our knowledge, been applied to the CT couplings. The main chal-
lenge of the problem is its dimensionality: assuming that the cou-
pling between two molecules is independent of the surrounding
molecules, the map still must be parameterized in a 3 ⋅ 2N − 6∼200
dimensional space (N = 42 for TAT and N = 36 for pentacene).
To overcome this problem, we make the rigid-body approxima-
tion12,61 when evaluating Ĥqm. Specifically, before computing the
time-dependent quantities in the Hamiltonian [Eq. (1)], we replace
each molecule in the MD simulations with the geometry-optimized
monomer structure, translated and rotated to have the same center
of mass and principal axes of inertia. In some respects, it would be
simpler to perform an MD simulation with rigid molecules. Instead,
we use the DREIDING force field, which calls for flexible molecules,
because it is well tested for organic crystals like these and is eas-
ily transferable to new systems without extensive parameterization
efforts.55,57,59 Simulating rigid monomers would require reparame-
terizing the MD force field in this work, as well as in future studies
of different organic crystals.

The rigid-body approximation decouples the intra- and
intermolecular phonons such that the nonlocal electron–phonon
coupling depends only on the intermolecular modes and contri-
butions from the intramolecular modes are neglected. Note, how-
ever, that the important high-frequency intramolecular modes are
still treated through the local electron–phonon coupling [Eq. (5)].
Importantly, the rigid-body approximation reduces the dimension-
ality of the problem from ∼200 to 6. Since each monomer is
exactly the same, the relative coordinates of any pair can be spec-
ified by three translational and three rotational degrees of free-
dom. In this reduced dimension, it might be possible to per-
form an explicit interpolation on a six-dimensional grid that maps
nearest-neighbor intermolecular geometries observed in the sim-
ulations to precomputed couplings at sparse grid points. We first
test this idea with TAT because it is simpler than pentacene in
regard to modeling optical properties; TAT can be modeled as a col-
lection of non-interacting one-dimensional π-stacks,43 while pen-
tacene must be treated as a collection of two-dimensional layers
(Fig. 1).62

A. TAT
1. Developing the map

To assess the feasibility of an interpolative map, we quantify
the fluctuations of the six intermolecular degrees of freedom for all
nearest-neighbor pairs of molecules in TAT in terms of the quanti-
ties s, θ, and Θ (Fig. 2). The three translational degrees of freedom
are described as “slips” sij of molecule j’s center of mass along the
principal axes of molecule i. The three orientational degrees of free-
dom are described by an angle of rotation θij (1 degree of freedom)
and the rotation axis Θij about which to rotate (3 degrees of freedom
−1 for normalization).

FIG. 2. Coordinate system used to define the relative orientation of two molecules
in a dimer pair. Here, the reference TAT molecule is centered at the origin with its
inertial axes defining the x, y, and z axes. The second TAT molecule is translated
by the vector s and then rotated about the axis Θ by the angle θ.

We are interested in the fluctuations of the intermolecular
geometries about their averages, which we define as δs, δθ, and δΘ.
For the translational slips, δs is simply defined by δs = s − ⟨s⟩. The
definitions of δθ and δΘ are more complex and are discussed in
Sec. S2 of the supplementary material. In the case of TAT, the
molecules are π-stacked, so their equilibrium structure has no rota-
tion (⟨θ⟩ = 0○, Table I). In this special case, θ = δθ and Θ = δΘ,
so these distinctions are unimportant, but as we will see, this is not
the case for pentacene (Sec. III B). Several other details regarding
the intermolecular degrees of freedom are discussed in Sec. S2 of the
supplementary material.

We find that the distributions of slips and orientations are local-
ized (Fig. 3), making this system amenable to an interpolation map
as described above. It is not surprising that the slip distributions and
rotation angle distributions are localized, since the system is crys-
talline, so mobility is limited, but it was not clear to us a priori that
the distribution of rotation axes would likewise be localized. Specif-
ically, we find that the observed rotation axes δΘ cluster around the

TABLE I. The interpolation grid used to calculate the CT couplings for TAT. The origin
of the grid is at the experimental geometry (see the text). The grid includes all points
that are integer multiples of the grid spacing and no more than a distance of “extent”
from the origin. The rotation axis Θ grid starts at (1, 0, 0), and includes the six axes
that are equally spaced at 60○ intervals about the xz-equator.

Expt.41
⟨⋅⟩sim Extent Spacing Grid size

sx (Å) 1.00 1.01 0.6 0.2 7
sy (Å) 1.28 1.12 0.6 0.2 7
sz (Å) 3.37 3.42 0.2 0.2 3
θ (deg) 0 0 10 5 3
Θ . . . . . . xz-equator 60○ 6

J. Chem. Phys. 153, 124113 (2020); doi: 10.1063/5.0021731 153, 124113-5

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0021731#suppl
https://doi.org/10.1063/5.0021731#suppl


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 3. Distributions of nearest-neighbor pair geometries in TAT. The coordinate
system is defined in Figs. 1(a) and 2. (a) Distributions of the fluctuations of the
translational slips. (b) Distribution of the fluctuations of the rotational axes on a
unit sphere, depicted as a Lambert azimuthal equal-area projection in which the
δΘz = 1 pole of the unit sphere is mapped to the origin, the δΘz = 0 equator is
shown as the thin black line, and the δΘz = −1 pole is mapped to the thick black
circle at the perimeter. This projection conserves the area, which is an important
property for a histogram. (c) Distribution of the cosine of the fluctuations of the
rotational angles. It is important to plot the cosine instead of the angle itself to
avoid singularities in the Jacobian at δθ = 0○.57

xz-equator of the unit sphere. This important observation means
that instead of covering the entire surface of the unit sphere with
an interpolation grid of rotational axes, we only need to include
rotational axes along the xz-equator.

Based on the distributions in Fig. 3, we construct a grid that
encompasses most of the observed configurations (Table I). The
sparsity of the grid is informed by calculations of CT couplings for
TAT and similar π-conjugated systems,62,63 which show that the
couplings vary approximately linearly on the scale of the grid spac-
ings we use. This grid results in a total of 2646 grid points or 2646
electronic structure calculations of dimers that must be completed
to compute the CT couplings at each grid point. This number can
be reduced to 1911 points by recognizing that for grid points with
δθ = 0, the rotational axis is irrelevant, and that dimension of the

grid can be ignored. The size of the grid could be further reduced
by accounting for the symmetry of the molecule and the cross-
correlation between the distributions of intermolecular geometries.
That is, all the slips do not take their maximum values at the same
time. For the level of electronic structure calculations we use, and
for the number of atoms in TAT, these optimizations are not neces-
sary so we do not make them. They may become necessary for larger
molecules or more expensive electronic structure basis sets.

The CT couplings are calculated at each grid point of the map
following the methods discussed in Refs. 64–67 using the Gaussian
software package68 and the B3LYP/3-21G level of theory. The map
is provided in Sec. S3 of the supplementary material. Several other
basis sets and functionals were also considered, but we found that
all methods gave qualitatively similar results (see Table S8 of the
supplementary material). The couplings for non-nearest-neighbors
are assumed to be zero, which is generally a good approxima-
tion given the short-range, exponentially decaying nature of these
interactions.12

The average nearest-neighbor pair geometry we observe in sim-
ulation is quite close to the experimental crystal structure; the largest
difference in slip is 0.16 Å (Table I).41 Even over such small displace-
ments, however, the computed CT couplings can change sign.62 To
account for this sensitivity, we treat the fluctuations about the equi-
librium geometry in the MD simulation as fluctuations about the
experimental crystal structure. That is, in the MD simulation, we
measure the slips s = ⟨s⟩ + δs, but we interpolate the CT couplings
using s = sexpt + δs. This provides the important benefit that the
interpolation map only needs to be computed once and can then be
applied to any MD simulation, regardless of the equilibrium inter-
molecular geometries that are realized by a particular force field.
At most, one might have to extend the map to accommodate larger
fluctuations in one MD simulation relative to another.

With the completed grid of CT couplings, we perform a linear
interpolation to map a dimer configuration from the MD simulation
to a pair of CT couplings te and th. We interpolate the orientational
axis by first projecting the axis to the xz-equator and then interpo-
lating along the equator. For the 0.1% of dimer configurations that
are outside the grid, we linearly extrapolate the couplings.

We now turn to the calculation of the time-dependent CT
energies (ECT) and Coulomb couplings (J). To compute the CT
energies, we treat each electron and hole as a point charge located
at the center-of-mass of its chromophore. This is a good approx-
imation for large electron–hole separations and has been applied
successfully to compute time-independent CT energies in previ-
ous work.2,43,44 Moreover, it allows us to replace the expression for
the Coulomb potential V(qNi (t),q

N
j (t)) in Eq. (4) with a simple

expression

V(rcom
ij (t)) =

−e2

4πε0εs
1

rcom
ij (t)

. (8)

Here, rcom
ij (t) = ∣qcom

j (t) − qcom
i (t)∣ is the distance between the

center-of-mass coordinates of molecules i and j, εs is the static dielec-
tric constant, and the remaining terms take their usual meanings.
The CT energy therefore fluctuates with the center-of-mass fluc-
tuations, ECT(rcom

ij (t)). It is convenient to express ECT(rcom
ij (t))

in terms of the static nearest-neighbor CT energy ECT(⟨rn.n.⟩)

= IP − EA + P + V(⟨rn.n.⟩) so that
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ECT(rij(t)) = ECT(⟨rn.n.⟩) − V(⟨rn.n.⟩) + V(rcom
ij (t)). (9)

While ECT(⟨rn .n .⟩) could be computed from first-principles, previ-
ous work has either treated it as a fitting parameter whose value
is extracted by fitting the calculated spectra to experimental spec-
tra,43,62 or derived it from the experiment.44,69 We take the nearest-
neighbor CT energy for TAT from Yamagata et al. (see Table S4 of
the supplementary material).43

The Coulomb coupling may be calculated using a variety of
approaches, including the point dipole approximation, transition
charges,70 and the density-cube method.71 Here, we use the tran-
sition charge method as it provides a good compromise between
accuracy and speed.72 Because the transition charges depend on
the intramolecular geometry and the intramolecular geometry of
each molecule fluctuates during the MD simulations, computing the
Coulombic coupling for these structures would necessitate an expen-
sive calculation of the transition charges of each molecule in the
crystal at each time step. As discussed in the context of the CT cou-
plings above, we make the rigid-body approximation and replace
each molecule in the MD simulation with a geometry-optimized
molecule. This means that we need to only compute the transition
charges once for the geometry-optimized monomer (see Table S6 of
the supplementary material). Within this framework, it is straight-
forward to apply the transition charges of the geometry-optimized
molecule at each time step and compute the Coulomb coupling
between each pair. The raw Coulombic couplings are then screened
by an optical dielectric constant ε.

We note that one must ensure that the phases of the CT cou-
plings and transition charges are correct and consistent for the dura-
tion of the simulation. We assign the phases by visual inspection
and ensure that they are consistent with previous works.43 A com-
plete description of the relative phases necessary for using the maps
is provided in Sec. S3 of the supplementary material.

The values of all time-independent parameters are given in
Table S7 of the supplementary material.

2. Spectroscopy
We first compute the distributions of the couplings in TAT. We

find that the fluctuations in the couplings are on the same order of
magnitude as their means, in line with observations of Troisi and co-
workers [Fig. 4(a), and Table S5 of the supplementary material].20,21

To make contact with their work on fluctuations in the exciton cou-
pling, we also compute the total exciton coupling Jtot = JSR + J, where
J is the Coulomb coupling in Eq. (2) and JSR is the short-ranged,
charge-transfer mediated coupling,34,35

JSR(qNi ,qNj ) =
−2te(qNi ,qNj )th(q

N
i ,qNj )

ECT(qNi ,qNj ) − ES1 − Δ0−0
. (10)

Figure 4(a) shows the distribution of Jtot for nearest-neighbors in
TAT. Note that JSR and Jtot do not enter into the calculation of the
spectrum but are simply used to make a comparison with the previ-
ous results. As discussed in Sec. I, one might expect these large fluc-
tuations to have important effects on the absorption spectroscopy of
TAT, but this expectation is at odds with the successful modeling

FIG. 4. (a) The distributions of the nearest-neighbor couplings in TAT. (b) The
experimental absorption spectrum of TAT (blue),43 compared to the theoretical
spectra with (purple) and without (orange) nonlocal electron–phonon coupling. The
spectra are normalized by the maximum peak height to allow comparison between
the experiment and the theory. (c) The effects of the nonlocal electron–phonon
coupling cannot be fully captured by simply broadening the ⟨Ĥ⟩ spectrum, even
though the change in the 0-0/0-1 peak area ratio can (see Sec. S6 of the sup-
plementary material). The purple curve here is the same as the purple curve in
panel (b).

of the absorption of TAT without nonlocal electron–phonon cou-
pling.43 Furthermore, the coupling distributions are strongly non-
Gaussian, indicating that nonlinear models of nonlocal electron–
phonon coupling, like the one presented here, may be needed to
accurately capture photophysical and charge transport properties. A
direct comparison between linear and nonlinear models of nonlo-
cal electron–phonon coupling is beyond the scope of this work but
merits future investigation.

The effects of these fluctuating couplings on the theoretical
absorption spectrum of TAT are shown in Fig. 4(b). To isolate
the effects of nonlocal electron–phonon coupling, we compare the
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spectrum computed with the time-averaged Hamiltonian ⟨Ĥ⟩ to
the time-dependent Hamiltonian Ĥ(t) [Eq. (1)]. The spectrum is
calculated for only one of the eight pillars of molecules in the
MD simulation [Fig. 1(c)] because the couplings between adjacent
stacks are negligible, so the stacks can be treated as independent,
quasi-one-dimensional systems.43

The theoretical spectra [Fig. 4(b)], both with and without non-
local electron–phonon coupling, match the experimental spectrum
quite well, as has been previously demonstrated for the case without
nonlocal electron–phonon coupling.43 Note that the ⟨Ĥ⟩ spectrum is
calculated using the same parameter set and model as in Ref. 43, with
only minor changes in the couplings. The nonlocal electron–phonon
coupling has two noticeable effects on the spectrum: the spectrum
broadens and the relative peak heights change. To quantify these
changes, we fit the spectra with a set of four Lorentzian functions,
one for each of the four observable vibronic peaks (see Sec. S6 of the
supplementary material). We find that the full-width half-maximum
of the vibronic peaks increase by an average of ∼200 cm−1 due to the
nonlocal electron–phonon coupling and that the change in the rel-
ative peak heights is mainly a byproduct of the broadening, not a
separate effect [see Fig. 4(c), and Sec. S6 of the supplementary mate-
rial]. Note, however, that the entire spectral line shape of the Ĥ(t)
spectrum cannot be reproduced by uniformly broadening the ⟨Ĥ⟩
spectrum [Fig. 4(c)], indicating that nonlocal electron–phonon cou-
pling has a more nuanced effect on the spectrum. This is discussed
in detail in Sec. III B 2 when considering the pentacene spectrum.

These results provide proof-of-principle for our approach to
incorporate nonlocal electron–phonon coupling into spectroscopic
calculations. Despite the large fluctuations in the CT couplings
[Fig. 4(a)], the effects on the absorption spectrum are, somewhat sur-
prisingly, relatively minimal. In order to make contact with previous
work studying the fluctuations of couplings in acene systems20–22,38

and to demonstrate our mapping approach in a more complex
crystal structure, we now turn to the case of pentacene.

B. Pentacene
1. Developing the map

We begin, as in the case of TAT, by quantifying the fluctua-
tions in the nearest-neighbor intermolecular geometries observed in
pentacene. In TAT, only the nearest-neighbors, which form a one-
dimensional stack of molecules along the crystalline a-axis, have
non-negligible couplings. In pentacene, there are non-negligible
couplings between neighbors in both the a and b directions, result-
ing in an effective two-dimensional system that must be considered
to accurately model spectroscopy or charge transport. This means
that we can no longer consider only nearest-neighbors but must
consider all neighbors within the crystalline ab-plane (Fig. 1). In
pentacene, these neighbors can be classified by their spatial relation-
ship in the crystal structure. We label them using their fractional
coordinates in the unit cell relative to a reference molecule at (0, 0, 0).
In this notation, the two nearest-neighbors are those at ±( 1

2 ,− 1
2 , 0)

and ±( 1
2 , 1

2 , 0), with center-of-mass distances of 4.7 Å and 5.2 Å,
respectively.40 These pairs exhibit the herringbone stacking motif
that characterizes crystalline acenes. The next nearest-neighbors are
the ±(1, 0, 0) and ±(0, 1, 0) dimers at 6.3 Å and 7.7 Å,40 respectively.

These pairs are co-planar, not herringbone stacked. The CT cou-
plings (te and th) between the ±(0, 1, 0) dimers are negligible,44,69

so we ignore them here, but this still leaves three distinct types
of dimers, compared to a single type in TAT. This means that we
must parameterize the interpolation map in three disjoint regions
of the six-dimensional intermolecular geometry space. Note that
the labeling scheme described above is the same as that of Hestand
et al.,44 except that we define the lattice vectors in the same way as
Holmes et al.,40 while Hestand et al. swapped the a and b lattice
vectors.

The distributions of intermolecular geometries for the
±( 1

2 ,− 1
2 , 0) dimer are shown in Fig. 5. The distributions look quali-

tatively similar to those in TAT with one exception: the fluctuations
in the rotational axis are localized around (±1, 0, 0). This means that
most rotations are about the molecular long axis of pentacene. The
distributions for the ±( 1

2 , 1
2 , 0) and ±(1, 0, 0) dimers are qualitatively

FIG. 5. Distributions of the geometries of the±( 1
2 ,− 1

2 , 0) dimer in pentacene. The

distributions for the ±( 1
2 , 1

2 , 0) and ±(1, 0, 0) dimers are shown in Fig. S1 of the
supplementary material. The molecular coordinate system is defined in Fig. 1(d).
(a) Distributions of the fluctuations of the translational slips. (b) Distribution of
the fluctuations of the rotational axes on a unit sphere, depicted as a Lambert
azimuthal equal-area projection. (c) Distribution of the cosine of the fluctuations of
the rotational angles. See the caption of Fig. 3 for details.
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similar (see Fig. S1of the supplementary material). Based on these
distributions, we construct a grid for each type of dimer, similar to
the one for TAT shown in Table I (see Table S3 of the supplementary
material). Instead of interpolating the rotational axes along the xz-
equator, we interpolate all rotational axes with δΘx ≤ 0 to (−1, 0, 0)
and all rotational axes δΘx > 0 to (1, 0, 0). The total number of grid
points is 11 277, much larger than for TAT due to the three disjoint
regions of the map that must be considered. As before, we shift the
origin of the grid to the experimental dimer configurations, making
the grid generalizable to any MD force field. Previous work on pen-
tacene has scaled the CT couplings obtained from density functional
theory calculations by a factor of 1.1 to obtain better agreement
with experiment.44 Here, we do not scale the CT couplings to be
consistent with the calculations for TAT.

As before, the fluctuating Coulomb couplings are computed
based on the transition charge method, with transition charges
calculated for the geometry-optimized monomer (see Table S6 of
the supplementary material). The CT energies are also computed
as before [Eq. (9)], except that the nearest-neighbor CT energy
is parameterized separately for each dimer type (see Table S4 of
the supplementary material), in accordance with previous theoret-
ical44,69,73 and experimental works.74 For all electron–hole pairs fur-
ther than the ±(0, 1, 0) dimer, the CT energy is calculated using the
±( 1

2 ,− 1
2 , 0) energy and Eq. (9).44,69,73,75

2. Spectroscopy
The calculated ∥a and �a polarized spectra with and with-

out nonlocal electron–phonon couplings are shown in Fig. 6. Both

FIG. 6. The experimental absorption spectrum of pentacene, polarized along the
crystalline a-axis (top) and perpendicular to the a-axis (bottom). We compare the
experimental spectra (blue) to the theoretical spectra with (purple) and without
(orange) nonlocal electron–phonon coupling. The spectra are normalized to the
maximum peak height to allow comparison between the experiment and the theory.

theoretical spectra agree qualitatively with the experiment.44,75 As
in the case of TAT, the main effect of nonlocal electron–phonon
coupling is to broaden the spectra. Interestingly, however, the ∥a
spectrum (lower Davydov component) broadens considerably more
than the �a spectrum (upper Davydov component). Fitting the
spectra with Lorentzian functions shows that the full-width half-
maximum of the lowest energy vibronic peak increases by about
300 cm−1 in the ∥a spectrum when nonlocal electron–phonon cou-
pling is included, but only by about 50 cm−1 in the �a spectrum (see
Sec. S6 of the supplementary material). Previous theoretical mod-
eling of the absorption spectrum of pentacene has used a larger
line width parameter for the ∥a spectrum than the �a spectrum in
order to capture the observed experimental line widths.44,76 Here,
we use the same line width parameter for both components (see
Table S7 of the supplementary material) and find that the nonlocal
electron–phonon coupling selectively increases the line width of the
∥a spectrum.

The disparate line width broadening of the two polariza-
tion components can be understood by considering a simple
dimer model that incorporates nonlocal electron–phonon coupling
through fluctuations in te(t) and th(t). To focus on the effect of non-
local electron–phonon coupling, we neglect local vibronic coupling
and Coulomb coupling. The Hamiltonian for this simplified sys-
tem can be expressed in the basis ∣h1, e1⟩, ∣h2, e2⟩, ∣h1, e2⟩, ∣h2, e1⟩

as

Ĥdimer(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ES1 0 te(t) th(t)

0 ES1 th(t) te(t)

te(t) th(t) ECT 0

th(t) te(t) 0 ECT

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (11)

Here, ∣hn, em⟩ represent a state with a hole on chromophore n and an
electron on molecule m. When n = m, the state is a Frenkel exciton,
and when n ≠m, the state is a CT exciton.

It is convenient to transform the Hamiltonian to a symmetrized
basis ∣ψFE+⟩, ∣ψCT+⟩, ∣ψFE−⟩, ∣ψCT−⟩ (see Sec. S7 of the supplementary
material). In this basis, only states with the same symmetry (±) are
coupled, and the Hamiltonian is

Ĥdimer(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ES1 t+(t) 0 0

t+(t) ECT 0 0

0 0 ES1 t−(t)

0 0 t−(t) ECT

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (12)

where t±(t) = te(t) ± th(t). In this representation, the coupling
between ∣ψFE+⟩ and ∣ψCT+⟩ depends on the sum of the CT couplings
t+(t) = te(t) + th(t), while the coupling between ∣ψFE−⟩ and ∣ψCT−⟩

depends on the difference t−(t) = te(t)− th(t). While this discrepancy
is rather subtle, it has profound effects on how nonlocal electron–
phonon coupling can influence the eigenstates of the system and the
accompanying absorption spectrum.

Previous studies based on Frenkel exciton models have shown
that off-diagonal disorder broadens the line width according to the
variance of the disorder distribution; broader disorder distributions
give rise to broader line widths.36,37 In our model, then, the line
width of transitions to the symmetric states is broadened by the
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breadth of the distribution of t+(t), while the line width of transitions
to the antisymmetric states are broadened by the breadth of the dis-
tribution of t−(t). To understand how disparate broadening between
the two states might arise, consider the case where the fluctuations
in te(t) and th(t) are Gaussian with means ⟨te⟩ and ⟨th⟩ and vari-
ances σ2

e and σ2
h .77 We need not specify anything about the temporal

correlations of te(t) and th(t), except that they are shorter-lived than
the timescale of the spectroscopic measurement, so that the Gaus-
sian statistics are sufficiently sampled. If the fluctuations in te(t) and
th(t) are uncorrelated, then the variances of the distributions of t+(t)
and t−(t) are both σ2

± = σ2
e + σ2

h . In this case, the absorption peaks
arising from the symmetric and antisymmetric states broaden to the
same extent. In real systems, however, te(t) and th(t) are correlated,
so σ2

± = σ2
e +σ2

h±2ρσeσh, where ρ is the correlation coefficient between
the distributions of te(t) and th(t). Thus, when ρ is positive, σ2

+ > σ2
−,

and vice versa for ρ < 0. This means that the absorption peaks aris-
ing from the symmetric states are broadened more (ρ > 0) or less
(ρ < 0) by the nonlocal electron–phonon coupling than those aris-
ing from the antisymmetric states. In the limiting case where te(t)
and th(t) are perfectly correlated (ρ = 1) and identically distributed
(σe = σh), σ2

+ = 4σ2
e , while σ2

− = 0. In this extreme, the nonlo-
cal electron–phonon coupling only broadens the symmetric absorp-
tion peak. Likewise when te(t) and th(t) are perfectly anticorrelated
(ρ = −1) and identically distributed, only the antisymmetric absorp-
tion peak is broadened.

Thus, correlations between the fluctuations of te(t) and th(t)
can lead to selective broadening like that seen in pentacene.44,75 In
pentacene, the ∥a polarized lower Davydov component arises due
to absorption to the symmetric state, while the �a polarized upper
Davydov component arises mainly due to absorption to the antisym-
metric state.44,69,75 Our simple model therefore demonstrates that
the selective broadening of the lowest energy peak in the ∥a polar-
ized spectrum can be attributed to positive correlations between
fluctuations in te and th. Indeed, our mixed quantum–classical
mapping approach predicts that the fluctuations in te and th are,
in fact, positively correlated (see Table. S5 of the supplementary
material).

We note that the simple dimer model described above cannot
explain the nonuniform broadening observed in the TAT spectrum
or differences in broadening of different peaks in the ∥a-polarized
or �a-polarized pentacene spectrum. Additional nuances arise when
local vibronic coupling is considered as the phonons allow electronic
states of different symmetry to mix.78,79 Moreover, disorder in the
system breaks the periodicity of the lattice, which also allows elec-
tronic states of different symmetry to mix. A complete description
of nonuniform broadening due to nonlocal electron phonon cou-
pling requires an in-depth analysis of the Hamiltonian in Eq. (1).
This should be the subject of future investigation but is beyond the
scope of the current work.

While selective line broadening represents an interesting effect
of nonlocal electron–phonon coupling, the overall effect on the
absorption spectrum is relatively minor (Fig. 6). As was the case
for TAT [Fig. 4(a)], we find that for pentacene, the width of
the coupling distributions is indeed quite large, and on the same
order as their means (Fig. S2 of the supplementary material), in
agreement with the results of Troisi and co-workers.20,21 Neverthe-
less, the spectral line shape is relatively unaffected by these wide
distributions.

IV. CONCLUSION
We describe an approach that efficiently incorporates nonlo-

cal electron–phonon coupling of arbitrary form into model Hamil-
tonians for studying the photophysics and transport properties of
organic crystals. Our approach is inspired by mixed quantum–
classical methods that are common in theoretical vibrational spec-
troscopy and relies on an interpolation map for fast look-up of
precomputed electronic couplings. We apply this approach to study
the absorption spectroscopy of two organic crystals with important
applications in semiconductor devices. We find that even though
the electronic couplings fluctuate over several hundred cm−1, the
effect on the absorption spectrum is minimal and largely manifests
as an increase in the absorption line width. This explains how pre-
vious work, which often uses phenomenological line broadening
parameters fit to experiment, has been able to accurately model the
absorption spectra of organic crystals without accounting for non-
local electron–phonon coupling. The effects of nonlocal electron–
phonon coupling cannot be entirely captured through an increased
line broadening parameter, however, as we find that the line broad-
ening is not uniform across the spectrum and that different peaks
broaden to different extents. Importantly, this explains, for the first
time, the different line widths observed in the upper and lower Davy-
dov components of the pentacene spectrum. Using a model dimer
Hamiltonian, we attribute the different line widths in pentacene to
correlations between the fluctuations in CT couplings induced by
nonlocal electron–phonon coupling.

There are several possibilities for extending the approach pre-
sented here. For example, maps of the time-independent quantities
in Eq. (1) could be generated to include fluctuations in those quanti-
ties in the model. Other possibilities include generating the coupling
maps on-the-fly over the course of the MD simulation until suf-
ficient coverage of the sampled space has been obtained. Machine
learning approaches may also provide an avenue toward more accu-
rate maps and toward relaxing the rigid-body approximation.80–83

Finally, our mapping approach could be straightforwardly extended
to include coupling to triplet excitons to investigate the effects of
nonlocal electron–phonon coupling on singlet fission.

While spectroscopy is an important experimental probe in
organic crystals and can elucidate the nature of the electronic and
vibronic interactions in a system, these systems hold most promise
in the semiconductor industry, where charge transport proper-
ties such as carrier mobility are of utmost importance. The time-
dependent Hamiltonian that our method computes can be used with
any of the standard approaches that currently exist to evaluate the
charge transport properties of a material.84 We expect that this will
permit a comprehensive understanding of the effects of nonlinear-
ities in the nonlocal electron–phonon coupling on the electronic
properties of organic crystals.

SUPPLEMENTARY MATERIAL

See the supplementary material for details about the MD simu-
lations, the mapping procedure, the charge-transfer coupling maps,
probability distributions for the pentacene fluctuations, average
nearest-neighbor CT energies, statistics for the coupling fluctua-
tions, the complete parameter set for the spectroscopic calculations,
comparison of different ab initio methods for calculating the CT
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couplings, information about the phenomenological line broaden-
ing parameter, details about the spectral analysis, and details of the
dimer model.

AUTHORS’ CONTRIBUTIONS

S.E.S. and N.J.H. contributed equally to this work.

ACKNOWLEDGMENTS
This work was completed with resources provided by the

Pritzker School of Molecular Engineering and Research Computing
Center at the University of Chicago.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article and its supplementary material.

REFERENCES
1F. C. Spano, “The spectral signatures of Frenkel polarons in H- and J-aggregates,”
Acc. Chem. Res. 43, 429–439 (2010).
2N. J. Hestand and F. C. Spano, “Expanded theory of H- and J-molecular aggre-
gates: The effects of vibronic coupling and intermolecular charge transfer,” Chem.
Rev. 118, 7069–7163 (2018).
3S. Tretiak and S. Mukamel, “Density matrix analysis and simulation of electronic
excitations in conjugated and aggregated molecules,” Chem. Rev. 102, 3171–3212
(2002).
4F. C. Spano and C. Silva, “H- and J-aggregate behavior in polymeric semiconduc-
tors,” Annu. Rev. Phys. Chem. 65, 477–500 (2014).
5N. J. Hestand and F. C. Spano, “Molecular aggregate photophysics beyond the
Kasha model: Novel design principles for organic materials,” Acc. Chem. Res. 50,
341–350 (2017).
6T. R. Nelson, A. J. White, J. A. Bjorgaard, A. E. Sifain, Y. Zhang, B.
Nebgen, S. Fernandez-Alberti, D. Mozyrsky, A. E. Roitberg, and S. Tretiak, “Non-
adiabatic excited-state molecular dynamics: Theory and applications for model-
ing photophysics in extended molecular materials,” Chem. Rev. 120, 2215–2287
(2020).
7A. Köhler and H. Bässler, Electronic Processes in Organic Semiconductors: An
Introduction (Wiley-VCH, 2015).
8J.-L. Bredas and S. R. Marder, The WSPC Reference on Organic Electronics:
Organic Semiconductors (World Scientific, 2016).
9O. Ostroverkhova, “Organic optoelectronic materials: Mechanisms and applica-
tions,” Chem. Rev. 116, 13279–13412 (2016).
10J.-L. Brédas, D. Beljonne, V. Coropceanu, and J. Cornil, “Charge-transfer and
energy-transfer processes in π-conjugated oligomers and polymers: A molecular
picture,” Chem. Rev. 104, 4971–5004 (2004).
11S. Fratini, D. Mayou, and S. Ciuchi, “The transient localization scenario for
charge transport in crystalline organic materials,” Adv. Funct. Mater. 26, 2292–
2315 (2016).
12V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L.
Brédas, “Charge transport in organic semiconductors,” Chem. Rev. 107, 926–952
(2007).
13T. Holstein, “Studies of polaron motion: Part I. The molecular-crystal model,”
Ann. Phys. 8, 325–342 (1959).
14T. Holstein, “Studies of polaron motion: Part II. The “small” polaron,” Ann.
Phys. 8, 343–389 (1959).
15W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in polyacetylene,” Phys.
Rev. Lett. 42, 1698–1701 (1979).

16M. H. Lee and A. Troisi, “Vibronic enhancement of excitation energy transport:
Interplay between local and non-local exciton-phonon interactions,” J. Chem.
Phys. 146, 075101 (2017).
17J. H. Fetherolf, D. Golež, and T. C. Berkelbach, “A unification of the Holstein
polaron and dynamic disorder pictures of charge transport in organic crystals,”
Phys. Rev. X 10, 021062 (2020).
18H.-G. Duan, P. Nalbach, R. J. D. Miller, and M. Thorwart, “Ultrafast energy
transfer in excitonically coupled molecules induced by a nonlocal Peierls phonon,”
J. Phys. Chem. Lett. 10, 1206–1211 (2019).
19A. Troisi, G. Orlandi, and J. E. Anthony, “Electronic interactions and thermal
disorder in molecular crystals containing cofacial pentacene units,” Chem. Mater.
17, 5024–5031 (2005).
20A. Troisi and G. Orlandi, “Dynamics of the intermolecular transfer integral in
crystalline organic semiconductors,” J. Phys. Chem. A 110, 4065–4070 (2006).
21J. Aragó and A. Troisi, “Dynamics of the excitonic coupling in organic crystals,”
Phys. Rev. Lett. 114, 026402 (2015).
22J. Aragó and A. Troisi, “Regimes of exciton transport in molecular crystals in
the presence of dynamic disorder,” Adv. Funct. Mater. 26, 2316–2325 (2016).
23L. Wang, Q. Li, Z. Shuai, L. Chen, and Q. Shi, “Multiscale study of charge mobil-
ity of organic semiconductor with dynamic disorders,” Phys. Chem. Chem. Phys.
12, 3309–3314 (2010).
24R. G. Della Valle, E. Venuti, L. Farina, A. Brillante, M. Masino, and A. Girlando,
“Intramolecular and low-frequency intermolecular vibrations of pentacene poly-
morphs as a function of temperature,” J. Phys. Chem. B 108, 1822–1826 (2004).
25J. Kulda, D. Strauch, P. Pavone, and Y. Ishii, “Inelastic-neutron-scattering study
of phonon eigenvectors and frequencies in Si,” Phys. Rev. B 50, 13347 (1994).
26P. M. Kazmaier and R. Hoffmann, “A theoretical study of crystallochromy—
Quantum interference effects in the spectra of perylene pigments,” J. Am. Chem.
Soc. 116, 9684–9691 (1994).
27L. Gisslen and R. Scholz, “Crystallochromy of perylene pigments: Interference
between Frenkel excitons and charge-transfer states,” Phys. Rev. B 80, 115309
(2009).
28A. Troisi and G. Orlandi, “Charge-transport regime of crystalline organic semi-
conductors: Diffusion limited by thermal off-diagonal electronic disorder,” Phys.
Rev. Lett. 96, 086601 (2006).
29A. Troisi, “Prediction of the absolute charge mobility of molecular semiconduc-
tors: The case of rubrene,” Adv. Mater. 19, 2000–2004 (2007).
30A. Troisi, “Charge transport in high mobility molecular semiconductors:
Classical models and new theories,” Chem. Soc. Rev. 40, 2347–2358 (2011).
31L. Wang, D. Beljonne, L. Chen, and Q. Shi, “Mixed quantum-classical sim-
ulations of charge transport in organic materials: Numerical benchmark of the
Su-Schrieffer-Heeger model,” J. Chem. Phys. 134, 244116 (2011).
32S. Ciuchi, S. Fratini, and D. Mayou, “Transient localization in crystalline organic
semiconductors,” Phys. Rev. B 83, 081202 (2011).
33G. Schweicher, G. D’Avino, M. T. Ruggiero, D. J. Harkin, K. Broch,
D. Venkateshvaran, G. Liu, A. Richard, C. Ruzié, J. Armstrong, A. R. Kennedy,
K. Shankland, K. Takimiya, Y. H. Geerts, J. A. Zeitler, S. Fratini, and
H. Sirringhaus, “Chasing the “killer” phonon mode for the rational design of
low-disorder, high-mobility molecular semiconductors,” Adv. Mater. 31, 1902407
(2019).
34R. D. Harcourt, G. D. Scholes, and K. P. Ghiggino, “Rate expressions for exci-
tation transfer. II. Electronic considerations of direct and through-configuration
exciton resonance interactions,” J. Chem. Phys. 101, 10521–10525 (1994).
35G. D. Scholes, R. D. Harcourt, and K. P. Ghiggino, “Rate expressions for excita-
tion transfer. III. An ab initio study of electronic factors in excitation transfer and
exciton resonance interactions,” J. Chem. Phys. 102, 9574–9581 (1995).
36J. Klugkist, V. Malyshev, and J. Knoester, “Scaling and universality in the optics
of disordered exciton chains,” Phys. Rev. Lett. 100, 216403 (2008).
37H. Fidder, J. Knoester, and D. A. Wiersma, “Optical properties of disordered
molecular aggregates: A numerical study,” J. Chem. Phys. 95, 7880–7890 (1991).
38R. P. Fornari, J. Aragó, and A. Troisi, “Exciton dynamics in phthalocyanine
molecular crystals,” J. Phys. Chem. C 120, 7987–7996 (2016).
39C. R. Baiz, B. Błasiak, J. Bredenbeck, M. Cho, J.-H. Choi, S. A. Corcelli, A. G.
Dijkstra, C.-J. Feng, S. Garrett-Roe, N.-H. Ge, M. W. D. Hanson-Heine, J. D.
Hirst, T. L. C. Jansen, K. Kwac, K. J. Kubarych, C. H. Londergan, H. Maekawa,

J. Chem. Phys. 153, 124113 (2020); doi: 10.1063/5.0021731 153, 124113-11

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0021731#suppl
https://doi.org/10.1021/ar900233v
https://doi.org/10.1021/acs.chemrev.7b00581
https://doi.org/10.1021/acs.chemrev.7b00581
https://doi.org/10.1021/cr0101252
https://doi.org/10.1146/annurev-physchem-040513-103639
https://doi.org/10.1021/acs.accounts.6b00576
https://doi.org/10.1021/acs.chemrev.9b00447
https://doi.org/10.1021/acs.chemrev.6b00127
https://doi.org/10.1021/cr040084k
https://doi.org/10.1002/adfm.201502386
https://doi.org/10.1021/cr050140x
https://doi.org/10.1016/0003-4916(59)90002-8
https://doi.org/10.1016/0003-4916(59)90003-x
https://doi.org/10.1016/0003-4916(59)90003-x
https://doi.org/10.1103/physrevlett.42.1698
https://doi.org/10.1103/physrevlett.42.1698
https://doi.org/10.1063/1.4976558
https://doi.org/10.1063/1.4976558
https://doi.org/10.1103/physrevx.10.021062
https://doi.org/10.1021/acs.jpclett.9b00242
https://doi.org/10.1021/cm051150h
https://doi.org/10.1021/jp055432g
https://doi.org/10.1103/physrevlett.114.026402
https://doi.org/10.1002/adfm.201503888
https://doi.org/10.1039/b913183c
https://doi.org/10.1021/jp0354550
https://doi.org/10.1103/physrevb.50.13347
https://doi.org/10.1021/ja00100a038
https://doi.org/10.1021/ja00100a038
https://doi.org/10.1103/physrevb.80.115309
https://doi.org/10.1103/physrevlett.96.086601
https://doi.org/10.1103/physrevlett.96.086601
https://doi.org/10.1002/adma.200700550
https://doi.org/10.1039/c0cs00198h
https://doi.org/10.1063/1.3604561
https://doi.org/10.1103/physrevb.83.081202
https://doi.org/10.1002/adma.201902407
https://doi.org/10.1063/1.467869
https://doi.org/10.1063/1.468773
https://doi.org/10.1103/physrevlett.100.216403
https://doi.org/10.1063/1.461317
https://doi.org/10.1021/acs.jpcc.6b01298


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

M. Reppert, S. Saito, S. Roy, J. L. Skinner, G. Stock, J. E. Straub, M. C. Thielges,
K. Tominaga, A. Tokmakoff, H. Torii, L. Wang, L. J. Webb, and M. T. Zanni,
“Vibrational spectroscopic map, vibrational spectroscopy, and intermolecular
interaction,” Chem. Rev. 120, 7152–7218 (2020).
40D. Holmes, S. Kumaraswamy, A. J. Matzger, and K. P. C. Vollhardt, “On the
nature of nonplanarity in the [N]phenylenes,” Chem. - Eur. J. 5, 3399–3412 (1999).
41J. Fan, L. Zhang, A. L. Briseno, and F. Wudl, “Synthesis and characterization of
7,8,15,16-tetraazaterrylene,” Org. Lett. 14, 1024–1026 (2012).
42A. J. Wise, Y. Zhang, J. Fan, F. Wudl, A. L. Briseno, and M. D. Barnes, “Spec-
troscopy of discrete vertically oriented single-crystals of n-type tetraazaterrylene:
Understanding the role of defects in molecular semiconductor photovoltaics,”
Phys. Chem. Chem. Phys. 16, 15825–15830 (2014).
43H. Yamagata, D. S. Maxwell, J. Fan, K. R. Kittilstved, A. L. Briseno, M. D. Barnes,
and F. C. Spano, “HJ-aggregate behavior of crystalline 7,8,15,16-tetraazaterrylene:
Introducing a new design paradigm for organic materials,” J. Phys. Chem. C 118,
28842–28854 (2014).
44N. J. Hestand, H. Yamagata, B. Xu, D. Sun, Y. Zhong, A. R. Harutyunyan,
G. Chen, H.-L. Dai, Y. Rao, and F. C. Spano, “Polarized absorption in crystalline
pentacene: Theory vs experiment,” J. Phys. Chem. C 119, 22137–22147 (2015).
45G. Schweicher, G. Garbay, R. Jouclas, F. Vibert, F. Devaux, and Y. H. Geerts,
“Molecular semiconductors for logic operations: Dead-end or bright future?,”
Adv. Mater. 32, 1905909 (2020).
46J. L. Skinner, B. M. Auer, and Y.-S. Lin, “Vibrational line shapes, spectral dif-
fusion, and hydrogen bonding in liquid water,” Adv. Chem. Phys. 142, 59–103
(2009).
47L. Shi and A. P. Willard, “Modeling the effects of molecular disorder on the
properties of Frenkel excitons in organic molecular semiconductors,” J. Chem.
Phys. 149, 094110 (2018).
48J. Cerezo, D. Aranda, F. J. Avila Ferrer, G. Prampolini, and F. Santoro, “The
adiabatic-molecular dynamics generalized vertical Hessian approach: A mixed
quantum classical method to compute electronic spectra of flexible molecules in
condensed phase,” J. Chem. Theory Comput. 16, 1215–1231 (2019).
49M. R. Philpott, “Theory of the coupling of electronic and vibrational excita-
tions in molecular crystals and helical polymers,” J. Chem. Phys. 55, 2039–2054
(1971).
50T. L. C. Jansen and J. Knoester, “Nonadiabatic effects in the two-dimensional
infrared spectra of peptides: Application to alanine dipeptide,” J. Phys. Chem. B
110, 22910–22916 (2006).
51T. L. C. Jansen and J. Knoester, “Waiting time dynamics in two-dimensional
infrared spectroscopy,” Acc. Chem. Res. 42, 1405–1411 (2009).
52S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,”
J. Comput. Phys. 117, 1–19 (1995).
53W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual molecular dynamics,”
J. Mol. Graphics 14, 33–38 (1996).
54A. Kohlmeyer, TopoTools, 2017.
55S. L. Mayo, B. D. Olafson, and W. A. Goddard, “DREIDING: A generic force
field for molecular simulations,” J. Phys. Chem. 94, 8897–8909 (1990).
56R. G. Della Valle, E. Venuti, A. Brillante, and A. Girlando, “Do computed crystal
structures of nonpolar molecules depend on the electrostatic interactions? The
case of tetracene,” J. Phys. Chem. A 112, 1085–1089 (2008).
57S. E. Strong and J. D. Eaves, “Tetracene aggregation on polar and nonpolar
surfaces: Implications for singlet fission,” J. Phys. Chem. Lett. 6, 1209–1215 (2015).
58W.-Q. Deng and W. A. Goddard, “Predictions of hole mobilities in oligoacene
organic semiconductors from quantum mechanical calculations,” J. Phys. Chem.
B 108, 8614–8621 (2004).
59C. C. Mattheus, G. A. de Wijs, R. A. de Groot, and T. T. M. Palstra, “Modeling
the polymorphism of pentacene,” J. Am. Chem. Soc. 125, 6323–6330 (2003).
60M. Tuckerman, B. J. Berne, and G. J. Martyna, “Reversible multiple time scale
molecular dynamics,” J. Chem. Phys. 97, 1990–2001 (1992).
61G. M. Day, S. L. Price, and M. Leslie, “Atomistic calculations of phonon fre-
quencies and thermodynamic quantities for crystals of rigid organic molecules,”
J. Phys. Chem. B 107, 10919–10933 (2003).
62N. J. Hestand, R. Tempelaar, J. Knoester, T. L. C. Jansen, and F. C. Spano, “Exci-
ton mobility control through sub-Å packing modifications in molecular crystals,”
Phys. Rev. B 91, 195315 (2015).

63N. J. Hestand and F. C. Spano, “Interference between coulombic and CT-
mediated couplings in molecular aggregates: H-to J-aggregate transformation in
perylene-based π-stacks,” J. Chem. Phys. 143, 244707 (2015).
64K. Senthilkumar, F. C. Grozema, F. M. Bickelhaupt, and L. D. A. Siebbeles,
“Charge transport in columnar stacked triphenylenes: Effects of conformational
fluctuations on charge transfer integrals and site energies,” J. Chem. Phys. 119,
9809–9817 (2003).
65K. Senthilkumar, F. C. Grozema, C. F. Guerra, F. M. Bickelhaupt, F. D. Lewis,
Y. A. Berlin, M. A. Ratner, and L. D. A. Siebbeles, “Absolute rates of hole transfer
in DNA,” J. Am. Chem. Soc. 127, 14894–14903 (2005).
66E. F. Valeev, V. Coropceanu, D. A. da Silva Filho, S. Salman, and J.-L.
Brédas, “Effect of electronic polarization on charge-transport parameters in
molecular organic semiconductors,” J. Am. Chem. Soc. 128, 9882–9886 (2006).
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