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ABSTRACT: Mirroring their role in electrical and optical physics, two-dimensional
crystals are emerging as novel platforms for fluid separations and water desalination, which
are hydrodynamic processes that occur in nanoscale environments. For numerical
simulation to play a predictive and descriptive role, one must have theoretically sound
methods that span orders of magnitude in physical scales, from the atomistic motions of
particles inside the channels to the large-scale hydrodynamic gradients that drive transport.
Here, we use constraint dynamics to derive a nonequilibrium molecular dynamics method
for simulating steady-state mass flow of a fluid moving through the nanoscopic spaces of a
porous solid. After validating our method on a model system, we use it to study the
hydrophobic effect of water moving through pores of electrically doped single-layer
graphene. The trend in permeability that we calculate does not follow the hydrophobicity
of the membrane but is instead governed by a crossover between two competing molecular
transport mechanisms.

Numerical techniques, rooted in theory, are indispensable
tools in the study of liquids and fluids. On microscopic

length and time scales, statistical mechanics underpins the
molecular dynamics (MD) methods for systems at thermal
equilibrium.1 On macroscopic scales, continuum hydrodynam-
ics can describe fluids driven away from equilibrium.2 However,
it remains unclear how one should simulate an atomistic system
away from equilibrium.3−8 This gap in knowledge makes it
difficult to model processes on the mesoscale, such as water
desalination, gas separation, and cellular transport. In these
systems, gradients in continuous fields, like density and
pressure, drive flow through bottlenecks that admit only a
few particles at a time.3,9−21 These processes require computa-
tional models to be theoretically rigorous and accurate across
orders of magnitude in physical scales.
Hydrodynamic approaches are rooted in continuum models

that inherently break down on atomic scales.2 Conversely,
microscopic MD simulations only generate rigorously accurate
dynamics for closed and isolated systems.22 These systems can
be coupled to a heat bath to generate static averages consistent
with the canonical ensemble, but the thermostats that do this
are not unique.1 The dynamics generated under various
thermostatting schemes can be quite different, even at thermal
equilibrium.1,22 In nonequilibrium MD simulations, both an
external force and a thermostat counterbalance to maintain
steady state.23,24 The implementation of these two components
is likewise not unique. Away from equilibrium, the interaction
between the thermostat and an external driving force can
produce results that are manifestly unphysical.25−28

In this Letter, we develop a method for simulating atomistic
systems in nonequilibrium steady states of mass flow. Our
method, which we call Gaussian dynamics (GD), finds the
equations of motion that are consistent with a minimal set of

constraints, much like early system−bath coupling schemes
devised in MD methods.24 We constrain only the total mass
current and kinetic temperature. Gradients in hydrodynamic
fields such as velocity, density, temperature, and pressure arise
naturally (Figure 1b). We test GD using a simple two-
dimensional (2D) liquid flowing through channels of various
geometries at various Reynolds numbers (Re).
We then use GD to study the permeability of porous 2D

crystals. Porous 2D crystals offer a new paradigm of atomically
thin semipermeable membranes for gas and liquid separa-
tions19−21,29,30 and have important applications in water
desalination through reverse osmosis.10−15,30−34 At low Re,
where most reverse osmosis devices operate,35 one expects the
system to be close enough to equilibrium that linear response
theory is accurate.36 But for porous 2D crystals to function as
high-fidelity separators, the pores must be so small that only a
few water molecules occupy them at a time. Therefore, as we
show here, permeabilities computed from linear response
average poorly, and it is more practical to perform non-
equilibrium simulations.
We study the dynamical hydrophobic effect in porous 2D

crystals using electrically doped graphene, which has a
continuously tunable hydrophobicity37 and is experimentally
realizable.31,38,39 In water desalination applications, the hydro-
phobic effect can play two counteracting roles: Water facing a
hydrophobic sheet could feel a penalty toward wetting the pore,
thereby lowering the permeability.40−43 But water might also
adhere less strongly to a hydrophobic surface, which would
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lower the friction and increase the permeability.44 This latter
effect is purely dynamical in nature. We find that the observed
behavior is more complex than either of these scenarios would
predict. Understanding it requires a detailed picture of the
microscopic transport mechanism, which we build using a
Markov model.
We begin by deriving GD. For a system of N fluid particles

with masses {m} at positions {r}, suppressing notation for all
implicit time dependence, the flow constraint is
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where u(r) is the streaming velocity of the fluid evaluated at
point r and dots denote time derivatives. This constraint is
nonholonomic and cannot be treated easily using Euler−
Lagrange or Hamiltonian dynamics,45,46 so we turn instead to
Gauss’s principle of least constraint.24,47,48 The Gaussian cost
function C is
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where Fi = −∇iU is the force on particle i from the potential
function U, λEM and λf are Gaussian multipliers, and GEM is the
Evans−Morriss constraint on the kinetic temperature and
molecular geometries.24,48−52 The accelerations that minimize
this cost function satisfy the equation of motion

ξ̈ = + − ̇ − −m m mr F f r u r I( ( ))i i i i i i i i (3)

where fi is the rigid bond constraint on particle i and ξ is the
drag coefficient of a profile-unbiased isokinetic thermo-
stat.24,25,48−52 A comprehensive derivation of eq 3 appears in
the Supporting Information (SI). The flow constraint, eq 1,
introduces an external force, miI, into eq 3
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where M = ∑i=1
N mi is the total mass of the fluid. I is weak,

fluctuating in time, and uniform in space (see SI). It acts as a
fluctuating gravitational field that maintains the mass current,
counteracting the virtual work required to hold a set of wall or
membrane atoms fixed in space. Computing I scales as N( ),
so it adds little computational burden. As in the isokinetic
thermostat, one can solve for ξ iteratively at each time step.
Instead, we take the more computationally efficient approach
and fix the average kinetic temperature using a profile-unbiased
Nose−́Hoover thermostat.24,25,53,54
Equation 3 is a central result of this Letter. While simple, it is

theoretically rooted in constraint dynamics and stands in
contrast to ad hoc approaches that employ some mixture of
external forces, particle swaps, and thermostats.3−8,55 In the
context of nonequilibrium statistical mechanics, GD, a constant
current protocol, is a Norton ensemble method. In this Letter,
we compare results from GD with its conjugate Thev́enin
ensemble, or fixed gradient method, Zhu, Tajkhorshid, and
Schulten’s “pump method”.3 Where possible, we also compare
to the equilibrium predictions from linear response theory.36

A simple 2D Lennard-Jones fluid flowing through a channel
provides a computationally feasible test system (Figure 1a). To
compare the GD and pump methods, we draw on the Hagen−
Poiseuille (HP) law from hydrodynamics to calculate an
effective viscosity, ηeff

η ρ= Δd P
LJ12eff

2

(5)

which relates the mass flux, J = ρt|u| (see the SI), to the pressure
drop, ΔP, applied across a channel of length L and diameter d
(Figure 1a). Note the distinction between ρ, the mass density
of the bulk fluid, and ρt , the total mass density of the fluid over
the entire simulation box, including volume excluded by the
channel walls (see the SI). We certainly do not expect the HP
law to be quantitative on these length scales, but merely use it
as a practical means to discuss the relationship between the
current and the pressure drop for channels of various
geometries in a consistent way (Figure 1c). The Norton and

Figure 1. (a) Closeup of a snapshot from a 2D Lennard-Jones simulation evolving under GD, including variables for the length (L) and diameter (d)
of the channel. (b) Steady-state kinetic temperature (color) and velocity field (vectors), u(r), averaged over time at Re = 3. Hydrodynamic variables,
like u(r), and associated gradients in density, temperature, and pressure develop naturally under the imposed constraints. (c) The pressure drop as a
function of the mass flux, J, for both GD and the pump method in 2D Lennard-Jones simulations at various flow rates, with 96 trials at each flow rate.
The slope of these data determines the effective viscosity, ηeff (see eq 5 and the SI). Panel (d) compares ηeff for the two methods at various L and d,
plotted as a function of Re at maximum J. The symbol shape indicates the diameter (d) of the channel: △ (d = 18 σ), □ (d = 14 σ), ○ (d = 8 σ), ▽
(d = 4 σ). The computed ηeff of the two methods match well at low Re but show increasing differences for narrow channels (▽) as Re increases. The
inset to panel (c) shows the density profile along the direction of flow, x. The inset is a periodically wrapped image of (a) and (b), with the pore and
its periodic image at the left and right edges of the inset. The density is discontinuous in the pump region of the pump method, but smooth in GD.
The changes in density shown here are ±3% from the average bulk density (see the SI).
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Thev́enin ensembles should give similar results for the effective
viscosity ηeff, regardless of the fundamental inaccuracy of the
HP law (see the SI).
We compute the pressure as a function of position in the

simulations using the zeroth-order Irving−Kirkwood approx-
imation, which we apply only where it is valid, away from the
channel walls.56,57 This method is convenient and accurate, but
not unique.56−60 The pressure drop, ΔP, comes from a linear
extrapolation to the edges of the channel. In GD, the
fluctuating acceleration, I, adds a hydrostatic pressure, which
we simply subtract before computing ΔP (see the SI). This
technique differs from others reported in the literature.3,4

We compare GD and the pump method over a range of Re

ρ
η

=
u L

Re in

(6)

where uin is the time-averaged center-of-mass velocity of the
fluid inside the pore and η is the bulk viscosity of the fluid (see
the SI). The effective viscosity (eq 5) computed using GD
compares well with that computed from the pump method,
particularly at low Re (Figure 1d). At larger Re (Re > 5), there
is more disagreement. It would be informative to simulate
higher Re and narrower channels, but these regimes take a
prohibitive amount of computational time to reach steady state
(see the SI). Some, but not all, of the disagreement at higher Re
is due to the thermostat conventionally used in the pump
method, which is not Galilean-invariant.3−5 To correct for this,
we have amended the original pump method to include a
profile-unbiased thermostat. This increases the agreement
between the two methods at higher Re, but it does not fully
account for the discrepancies observed (see the SI).
For a semipermeable membrane, an important figure of merit

is the permeability, p

=
Δ

p k T
q
PB (7)

where q is the flow rate (molecules/time), which is propor-
tional to the mass flux, J (see the SI). The permeability is
inversely related to the effective viscosity (eq 5).
We compute the permeability of porous single-layer

graphene over a range of voltages applied to the sheet using
GD, the pump method,3 and linear response theory.36 For GD
and the pump method, we compute the permeability using eq 7
with the slope of q versus ΔP (analogous to Figure 1c). At
equilibrium, we compute the permeability using linear response
theory, as described in ref 36. As in ref 37, we use the rigid
SPC/E water model,61−63 a standard potential for the carbon−
oxygen interaction,64 and find the effective charge per carbon
atom as a function of voltage from the dispersion relationship
of graphene.37 All carbon atoms have the same partial charge,
with the charge placed at the atomic centers of each carbon.
The SI contains the simulation details.
Using contact angle measurements, MD simulations of water

droplets on graphene have shown that graphene becomes more
hydrophilic at both positive and negative applied voltages.37 In
light of these simulations, our results show that the hydro-
phobicity of the sheet does not predict the permeability (Figure
2). The permeability of the sheet is higher at positive voltages
(excess electrons) but lower at negative voltages (excess holes),
even though the sheet is more hydrophilic in both regimes.37

The size of the error bars illustrates the difficulty of converging
these calculations, and it is only with GD that a statistically
significant trend appears. For similar computational costs and

for all simulations and quantities reported here, the standard
errors are smaller for GD than those for either of the other
methods (see the SI).
The discrepancy between the permeability and the hydro-

phobicity suggests that passage dynamics are not dominated by
a large-scale collective hydrophobic effect, like capillary
wetting.44 We instead suspect that microscopic motions control
the transport dynamics in pores with dimensions comparable to
a water molecule. To test this hypothesis, we coarse-grain the
occupancy of the channel and develop a stochastic Markov
model of the transport process. The pore is small enough that
passage is single-file (see the SI), so there are only four Markov
states, depicted in Figure 3a. We run simulations at equilibrium
and compute the transition probabilities and steady states of the
Markov process directly from the time series (inset, Figure 3b).
We examine two mechanisms for water passage through the

pore. As with single-file water in carbon nanotubes, water
molecules can move through the pore in a translocation
mechanism, crossing the membrane while maintaining an
unbroken chain of H-bonds.9−13,65−68 In the case of an
atomically thin channel, however, water molecules can also
cross the sheet individually, severing H-bonds and moving
through the pore in an evaporation−condensation mechanism.
To differentiate these mechanisms, we focus on the H-bond

between two water molecules in the pore. The translocation
mechanism relies on this H-bond staying intact, while the
evaporation−condensation mechanism requires that this bond
breaks. We approximate the breaking rate of this H-bond,
Wbreak, as the Markov transition probability per unit time from a
fully occupied pore to a singly occupied pore (see the SI)

≈ +→ →W W Wbreak full top full bottom (8)

using the state labels in Figure 3a. Wbreak follows the
permeability closely (Figure 3b); a larger Wbreak correlates to
a higher permeability. This implies that the evaporation−
condensation mechanism becomes more prevalent at higher

Figure 2. Permeability in femtoliters/second (eq 7) of a single pore in
a graphene sheet as a function of the voltage applied to the sheet,
reported in volts. The hydrophobicity of the graphene sheet, calculated
in ref 37, does not follow the permeability shown here.
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permeability (positive voltages). The steady-state occupancies
of the Markov process support this picture as well; the
probability of observing a singly occupied pore correlates
positively with the permeability, while the probability of a
observing a doubly occupied pore is anticorrelated with it
(Figure 3c).
We propose the following picture to explain the results of the

Markov model: When graphene is negatively charged (positive
voltage), it functions as an H-bond acceptor and can form
contacts with the positively charged hydrogens on the water
molecules (inset, Figure 3c). With their H-bonds satisfied
through contacts on the sheet, the water molecules can break
their H-bonds with other water molecules more easily. A
positive voltage thus facilitates H-bond breakage both between
the water molecules in the channel and between the bulk and
the channel waters, thereby lowering the barrier for the
evaporation−condensation mechanism relative to the trans-
location one. Because water molecules pivot around a massive
oxygen, there is an intrinsic molecular asymmetry in the
dynamics of passage, so that the hydrogens enter the channel
first. We propose that the decrease in permeability at positive
charge (negative voltage) is due to an increasing energetic
penalty for the light and rotationally mobile hydrogen atoms to
enter the pore.
In this Letter, we described a simulation method for

atomistic systems under flow that is firmly rooted in constraint
dynamics. In the low Re limit studied here, GD performs
similarly when compared to the pump method and to linear
response theory. But from a practical perspective, simulations
using GD consistently yield smaller standard errors for both
permeabilities and effective viscosities when all other variables
are the same (see the SI). While the focus in this Letter was on
nanoscale permeability, it is not at all obvious that the three
methods studied here will give similar results for other
observables, particularly at high Re (Re > 10). Indeed, GD
always dissipates less heat than the pump method for the same
mass flux. This effect is likely due to heating at the discontinuity
in the applied force used in the pump method. These artifacts
in the pump method may make GD more accurate at high Re

(see the SI) and for other observables more sensitive to heat
flux.
With the appropriate methods in place, we studied the

permeability of a nanopore embedded in a graphene sheet.
Permeability is not a simple function of the sheet’s hydro-
phobicity. A Markov model reveals that the asymmetry of the
permeability as a function of voltage can be explained in
molecular terms, by a transition from a concerted translocation
transport mechanism to an evaporation−condensation mech-
anism. Because the transport process is bottlenecked by only a
few water molecules for pores of these sizes, the collective
aspects of hydrophobicity have little bearing on the dynamics of
water passage.
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