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ABSTRACT: Absorption and emission line shapes of vibrational and
electronic transitions in liquids are broadened by interactions with the
“bath” (in this case, the rotational and translational degrees of
freedom of all the molecules in the liquid). If these degrees of
freedom are treated classically, the broadening process is often known
as dephasing. If, on the other hand, the bath degrees of freedom are
instead treated quantum mechanically, there is additional broadening
due to what is known in the chemical-physics literature as
decoherence. The question addressed in this paper is the relative
importance of decoherence (bath quantum effects) and dephasing.
We present general developments of this subject for absorption and
emission line shapes, discover several new relationships connecting
classical and quantum treatments of the bath, and also consider the Stokes shift (difference in peak frequencies in absorption and
emission). We next draw some general conclusions by considering a model system whose transition-frequency time-correlation
function has only one bath time scale. We then consider a realistic system of the vibrational OH stretch transition of dilute HOD in
liquid D2O at room temperature. For this system, we conclude that bath quantum effects are not very important, except for the
Stokes shift. More generally, we argue that this is the case for many vibrational and most electronic transitions in room-temperature
liquids.

1. INTRODUCTION

Vibrational and electronic spectroscopies have proven to be
important techniques for probing the structure and dynamics
of condensed matter. Herein, we focus on the absorption and
emission line shapes for a transition between two vibronic
states of a solute molecule in a liquid. These two quantum
states are coupled to a thermal bath consisting of the rotational
and translational degrees of freedom of all the molecules
(including the solute). This coupling often results in
broadening of the line shape in addition to the natural line
width due to radiative relaxation. For example, the bath can
induce additional population relaxation between the states
through off-diagonal coupling; we discuss this process later in
the Introduction, but it is not the focus of this paper. Rather,
herein we consider the effect of diagonal coupling to the bath,
which produces line broadening through phase relaxation.1−3

For a classical bath, this phase relaxation (which we simply
call “dephasing”) arises from time-dependent fluctuations of
the energy gap, ℏω, between the two quantum states, where ω
is the angular transition frequency. In 1969, Kubo laid out two
important limiting cases, homogeneous and inhomogeneous
dephasing, which are useful in understanding the effects of
dephasing on line broadening.4 Using Kubo’s notation, where

Δ is the root-mean-square (RMS) deviation of the transition-
frequency fluctuations, and τ is the correlation time of the
fluctuations, inhomogeneous dephasing corresponds to the
limit Δτ ≫ 1 and homogeneous dephasing corresponds to Δτ
≪ 1. In inhomogeneous dephasing, every member of the
ensemble effectively has a different transition frequency. In this
case, the line shape is typically Gaussian, with a line width
proportional to Δ. In the homogeneous dephasing limit, in
effect each member of the ensemble has the same transition
frequency (on the average), and the line shape is Lorentzian
with a line width proportional to Δ2τ. Since in this limit Δ2τ <
Δ, one says that the line shape is “motionally narrowed”. For
more realistic baths, where the frequency time-correlation
function decays on more than one time scale, the situation is
more complex.5

Now suppose that the same bath is treated quantum
mechanically. It turns out that the line broadening is enhanced
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from that for the classical bath, and the enhancement has come
to be known in the chemical-physics literature as “decoher-
ence”.6−9 Decoherence (bath quantum effects) by definition
vanishes when the bath degrees of freedom are treated in the
high-temperature (classical) limit. Note that the words
decoherence and dephasing can have different meanings in
the field of open quantum systems.10−15 The following
question arises, then: How important is decoherence in typical
vibrational or electronic spectroscopy in liquids? In fact,
decoherence is typically neglected completely, and so one
would like to know if this is a good approximation or not.
While formal approaches for including bath quantum effects in
absorption spectra do exist,1,2,16,17 they have only been applied
to a few realistic systems. The earliest appears to have been by
Kwac and Cho; in 2003, they calculated the absorption line
shape, including bath quantum effects, for the amide I mode of
N-methylacetamide in water.18

In 2005, Lawrence and Skinner19 attempted to address the
more general importance of bath quantum effects in line
shapes by considering a simple model for the frequency time-
correlation function, characterized by the two parameters Δ
and τ described above. Quantum effects of the bath were
introduced through the harmonic quantum-correction factor
(QCF),20−23 which involves a third parameter, temperature T
(or the time ℏ/kT ≡ βℏ). These three parameters lead to two
independent dimensionless ratios. Within the Condon and
second-cumulant approximations to the line shape, they then
computed the magnitude of quantum effects as a function of
these two ratios. They found that at low enough temperatures
such that βℏ > τ, quantum effects could be significant. At room
temperature (T = 295 K), βℏ = 26 fs. τ depends on the liquid
solvent, and the “fastest” common solvent is water, because of
the light hydrogen atoms. In fact, in rigid water models the
frequency time-correlation function decays on two time scales,
and the shorter characteristic time is about 40 fs, in which case
βℏ/τ = 0.65 < 1. From this, Lawrence and Skinner concluded
that decoherence is typically not important for vibrational or
electronic transitions in liquids. This conclusion was borne out
by considering two realistic specific examples, one of which is
the vibrational transition of the OH stretch of dilute HOD in
liquid D2O.
Another approach for including bath quantum effects comes

from the closely related problem of bath-induced nonadiabatic
transitions (population relaxation) between two vibronic states
of a solute molecule in a liquid.24 The theoretical formulation
of this problem is similar to that of the line-shape problem, as
the observable is written in terms of the Fourier transform of a
similar time-correlation function. Bath quantum effects for
both problems can be described by a decoherence function.6−9

Even though the line shape and nonadiabatic transition time-
correlation functions involve different operators, the decoher-
ence function is formally the same for both processes.6−9

Since the early 1990s, the decoherence function for
nonadiabatic processes has usually been treated with the
frozen Gaussian approximation (FGA) for wave packet
evolution on the two potential surfaces.6,7,25−36 If the
multidimensional potential surface of the bath is harmonic
when the system is in the ground state, and the surface in the
excited state is identical but with a displaced minimum, the
problem can be solved exactly quantum mechanically,1,27 and it
can be shown that the FGA is exact.27 For realistic systems, this
harmonic model is not realized exactly, but still the FGA is
considered to be a good approximation. In 2006, Borgis,

Rossky, and Turi reconsidered the nonadiabatic transition
problem and instead used the harmonic QCF, which for the
harmonic model described above is also exact.22 In fact, they
showed that for the hydrated electron the decoherence
functions from the FGA and QCF approximations were
essentially the same.7,8,37 In 2009, Turi et al.9 used similar
theoretical approaches to calculate the absorption spectrum of
the hydrated electron, finding that decoherence was only of
modest importance.
In 2016, Joutsuka, Thompson, and Laage38 calculated the

absorption spectrum for dilute HOD in liquid D2O, finding
that quantum (decoherence) effects were substantial, increas-
ing the line width by nearly a factor of 2. Unlike Lawrence and
Skinner19 and Turi et al.,9 who used the harmonic QCF to
introduce quantum effects into the line shape, Joutsuka et al.38

used the FGA. Certainly, for the HOD/D2O system the
surfaces are not harmonic; nonetheless, given the discussion
above it is surprising that the results using the harmonic
QCF19 (quantum effects are negligible) and the FGA38

(quantum effects are substantial) are so different. Moreover,
the FGA result for HOD/D2O is in disagreement with the
general conclusions of Lawrence and Skinner.19 This
motivated us to try to understand more deeply under what
circumstances decoherence is expected to be important in line-
shape problems.
We begin by deriving some new results for the decoherence

function and the decoherence time, and we discuss criteria for
when quantum bath effects should be important (Section 2).
We also discuss the analogous emission line shape (Section 3)
and derive a new result for the Stokes shift (difference in
absorption and emission peak frequencies) (Section 4). We
illustrate this with a simple analytical model for the classical
frequency time-correlation function (Section 5). We then
reconsider the dilute HOD in D2O system discussed above,
using our new results to determine if quantum effects should
be important, and illustrate this by calculating absorption and
emission line shapes (Section 6). Our conclusions agree with
Lawrence and Skinner,19 that quantum effects are not very
important for the absorption line width of HOD/D2O. More
generally, we conclude that quantum bath effects are not
expected to be important for line shapes for nearly all
electronic transitions, and many vibrational transitions, in
room-temperature liquids.

2. ABSORPTION LINE SHAPE

In general, the absorption line shape of a quantum-mechanical
system with Hamiltonian H and dipole operator μ⃗, is given by

{ }∫ω μ μ∼ ⟨ϵ̂· ⃗ ϵ̂· ⃗ ⟩ω
∞

I Re t t( ) d e ( ) (0)t

0

i

(1)

where ϵ ̂ is the polarization unit vector of the linearly polarized
light, μ⃗(t) = eiHt/ℏμ⃗e−iHt/ℏ, and ⟨···⟩ indicates a thermal
quantum-mechanical average for Hamiltonian H.
As in ref 19, we immediately specialize this general situation

by considering the transition between two vibronic quantum
states of a solute molecule, where the ground state is |0⟩ and
the excited state is |1⟩. These two states are coupled to bath
degrees of freedom. When the molecule is in its ground state,
the bath Hamiltonian is H0, and when the molecule is in the
excited state, the bath Hamiltonian is H1. Herein we neglect
off-diagonal coupling to the bath. Thus, in the absence of the
radiation field the full Hamiltonian is
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= | ⟩⟨ | + | ⟩⟨ |H H H0 0 1 10 1 (2)

Within this two-level approximation, the dipole operator is
given by

μϵ̂· ⃗ = {| ⟩⟨ | + | ⟩⟨ |}m 0 1 1 0 (3)

where m is a bath operator. In the case where the excited
vibronic state is not appreciably populated in thermal
equilibrium, the line shape becomes

{ }∫ω ∼ ⟨ ⟩ω
∞

ℏ − ℏI Re t m t m( ) d e ( )e e (0)t H t H t

0

i i / i /0 1

(4)

where now = ℏ − ℏm t m( ) e eH t H ti / i /0 0 , and the angular brackets
indicate a thermal quantum average for the ground-state bath
Hami l ton ian H 0 . Defining u = (H 1 − H 0)/ℏ ,

= ℏ − ℏu t u( ) e eH t H ti / i /0 0 , and δu(t) = u(t) − ⟨u⟩, this can be
written in terms of a time-ordered exponential:1,9,39

l
moo
noo

|
}oo
~oo{ }∫ ∫ω δ∼ − ′ ′ω

∞
−⟨ ⟩

+I Re t m t t u t m( ) d e ( )exp i d ( ) (0)u t
t

0

i( )

0

(5)

where “+” orders the δu(t′)’s in increasing time from right to
left.
2.1. Classical Limit. In the classical limit, when m(t) and

δu(t) become classical variables (whose order no longer
matters), the line shape is

l
m
ooo
n
ooo

|
}
ooo
~
ooo{ }∫ ∫

ω

δ∼ − ′ ′ω
∞

−⟨ ⟩

I

Re t m t m t u t

( )

d e ( ) (0)exp i d ( )u t
t

0

i( )

0 c

c

(6)

The subscript c on the brackets explicitly indicates a classical
average. One might assume that the transition dipole and
frequency fluctuations are uncorrelated (although this is not
necessarily a good approximation40), in which case

l
m
ooo
n
ooo

|
}
ooo
~
ooo{ }∫ ∫

ω

δ∼ ⟨ ⟩ − ′ ′ω
∞

−⟨ ⟩

I

Re t m t m t u t

( )

d e ( ) (0) exp i d ( )u t
t

0

i( )
c

0 c

c

(7)

The Condon approximation neglects the bath dependence of
the transition dipole altogether, and so in this case

l
m
oo
n
oo

|
}
ooo
~
oo{ }∫ ∫

ω

δ∼ − ′ ′ω
∞

−⟨ ⟩

I

Re t t u t

( )

d e exp i d ( )u t
t

0

i( )

0 c

c

(8)

From this, one can make the second-cumulant approximation
by expanding the average of the exponential in cumulants and
truncating after the second term to obtain1

{ }∫ω ∼ ω
∞

−⟨ ⟩ −I Re t( ) d e eu t g t

0

i( ) ( )c c

(9)

where

∫ ∫= ′ ″ ″
′

g t t t C t( ) d d ( )
t t

c 0 0
c (10)

and

δ δ= ⟨ ⟩C t u t u( ) ( ) (0)c c (11)

is the classical frequency time-correlation function (FTCF).
Note that Cc(t) is real and so is the “dephasing function” e

−gc(t).
The time dependence of gc(t) controls the broadening of the
line shape.
Defining the mean-square frequency fluctuations by

δ⟨ ⟩ = = Δu C (0)2
c c

2
(12)

at short times eq 10 becomes

≈ Δg t t( ) /2c
2 2

(13)

We also note that the correlation time τ is defined by

∫τ = ̅
∞

t C td ( )
0

c (14)

where the normalized FTCF is

̅ = ΔC t C t( ) ( )/c c
2

(15)

In the inhomogeneous limit4 where Δτ ≫ 1, the dephasing
function is completely dominated by the short-time result in eq
13, in which case one can define a “dephasing time” τp by

τ
≈g t

t
( )

2c

2

p
2

(16)

since the dephasing function decays to zero on this time scale,
and so τp = 1/Δ.

2.2. Quantum Cumulant Approximation. Returning to
the fully quantum situation described by eq 5 and applying the
Condon and second-cumulant approximations, one obtains1

{ }∫ω ∼ ω
∞

−⟨ ⟩ −I Re t( ) d e eu t g t

0

i( ) ( )

(17)

where

∫ ∫= ′ ″ ″
′

g t t t C t( ) d d ( )
t t

0 0 (18)

and

δ δ= ⟨ ⟩C t u t u( ) ( ) (0) (19)

where now C(t) is the quantum FTCF. Note that since C(t) is
complex, g(t) is as well. With the definition of the decoherence
function e−gd(t) by6−9

=−
−

−e
e
e

g t
g t

g t
( )

( )

( )
d

c (20)

clearly

∫ ∫= − = ′ ″ [ ″ − ″ ]
′

g t g t g t t t C t C t( ) ( ) ( ) d d ( ) ( )
t t

d c 0 0
c

(21)

gd(t) results solely from the quantum effects of the bath, and of
course, g(t) = gc(t) + gd(t). Thus, the line shape is determined
by both dephasing and decoherence. The real part of gd(t)
causes additional line broadening over and above the classical
broadening, and the imaginary part produces an additional line
shift and possibly line-shape distortion (since the classical line
shape is symmetric within the second-cumulant approxima-
tion). In the short-time limit gd(t) is given approximately by9

≈ [ − ]g t C C t( ) (0) (0) /2d c
2

(22)
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2.3. Evaluating the Decoherence Function. The goal of
this Article is to calculate gd(t) and assess its importance. To
this end, the strategy herein is to start with a particular classical
model, defined by its classical FTCF Cc(t), and then determine
gd(t). To do this we need to obtain the quantum FTCF C(t)
from a knowledge only of its classical counterpart Cc(t). One
approach is through the QCF discussed in the Introduction.22

Quantum FTCFs obey certain time symmetries,22 which
impose specific restrictions on the form of acceptable QCFs.
Nonetheless, there are still an infinite number of different
QCFs that lead to the correct symmetry properties. The one
we choose here is called the harmonic QCF, because if the
system is harmonic, and the FTCF involves a linear
combination of the coordinates, then the harmonic QCF is
exact.22 And indeed, this is the case with the harmonic model
described in the Introduction. To the extent to which localized
or collective modes of the bath are approximately harmonic,
the harmonic QCF should be a good approximation.41

Defining the Fourier transforms

∫ ∫ω ω̂ = =ω

−∞

∞ ∞
C t C t t t C t( ) d e ( ) 2 d cos( ) ( )t

c
i

c
0

c

(23)

(since Cc(t) is even in time), and

∫ω̂ = ω

−∞

∞
C t C t( ) d e ( )ti

(24)

the multiplicative frequency-domain QCFs Q(ω) are defined
by22

ω ω ω̂ = ̂C Q C( ) ( ) ( )c (25)

and the harmonic QCF is20−23

ω β ω= ℏ
− β ω− ℏQ ( )

1 e (26)

As mentioned in the Introduction, βℏ has units of time and
will be an important parameter in what follows.
One way to proceed is to start with the classical FTCF Cc(t)

and calculate gc(t) from eq 10. Then Fourier transform Cc(t)
to get Ĉc(ω), obtain Ĉ(ω) using the QCF in eqs 25 and 26,
and then Fourier transform back using

∫π
ω ω= ̂ω

−∞

∞
−C t C( )

1
2

d e ( )ti
(27)

to obtain C(t). From this, one can obtain g(t) with eq 18 and
get gd(t) from g(t) and gc(t) (see eq 21). This was essentially
the approach we took in ref 19. On the other hand, note that
the classical limit follows as T gets large and hence βℏω tends
toward 0. Indeed, in this limit, Q(0) = 1, Ĉ(ω) = Cc(ω), and
C(t) = Cc(t). Therefore, if one is interested in quantum
corrections to the classical result, one can obtain these by
expanding the QCF in eq 26 in powers of βℏω, which gives

ω β ω β ω= + ℏ + ℏ + ···Q ( ) 1
2

( )
12

2

(28)

Then using eq 25 and inverse Fourier transforming gives

β β= + ℏ ̇ − ℏ ̈ +C t C t C t C t( ) ( ) i
2

( )
( )

12
( ) ...c c

2

c (29)

Using eq 21 and the fact that since Cc(t) is analytic and even,
Ċc(0) = 0, this yields

∫β

β

= − ℏΔΔ ′[ − ̅ ′ ]

+ ℏΔ [ − ̅ ] + ···

g t t C t

C t

( ) i
2

d 1 ( )

( )
12

1 ( )

t

d 0
c

2

c (30)

The first term, which is imaginary, was found by Lawrence and
Skinner,19 and in earlier work by Mukamel,1 but the second
term, which is real (and hence controls the decoherence
contribution to line broadening), is new to the best of our
knowledge. This is a central result of this work, which allows
one to understand under what circumstances decoherence is
important.
We now consider the short-time behavior of the

decoherence function, which may be important when Δτ ≫
1. As mentioned above, the classical FTCF is even, so it must
be quadratic at short time. Defining the time τs (“s” signifies
“short”) by

τ
̅ ≡ − + ···C t

t
( ) 1

2c

2

s
2

(31)

we immediately see from eq 30 that at short times

β
τ

β
τ

= ℏΔ − ℏΔ + ···g t
t t

( )
( )

24
i

12d

2 2

s
2

2 3

s
2

(32)

From this, one can define a “decoherence time” τd by

τ
{ } ≡Re g t

t
( )

2d

2

d
2

(33)

in which case

τ
τ

β
=

ℏΔ
2 3

d
s

(34)

We believe that this is also a new result. Since, as discussed
before, τp = 1/Δ, this gives the interesting result that the ratio
of decoherence to dephasing times is

τ
τ

τ
β

=
ℏ

2 3d

p

s

(35)

2.4. Decoherence Function from Ĉc(ω). Alternatively,
one can obtain a quantum result for gd(t) that is valid for all
temperatures (within the Condon, cumulant, and harmonic
QCF approximations) by working in the frequency domain.
We begin by using eqs 25−27 to write C(t) in terms of
Ĉc(ω):

8

∫β
π

ω ω ω β ω ω ω= ℏ ̂ { ℏ − }
∞

C t C t t( )
2

d ( ) coth( /2)cos( ) i sin( )
0

c

(36)

Then, doing the time integrals in eq 18, one finds that

∫β
π

ω
ω

ω
β ω ω

ω ω

= ℏ ̂
{ ℏ [ − ]

+ [ − ]}

∞
g t

C
t

t t

( )
2

d
( )

coth( /2) 1 cos( )

i sin( )
0

c

(37)

This formula is identical to that in ref 8 and similar to those in
refs 1 and 2.
To compute gd(t) we need to subtract the classical limit of

g(t). To that end, the hyperbolic cotangent can be expanded
for small βℏω (high temperature); keeping the first term, and
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since in this limit the real part dominates the imaginary part,
this becomes the classical line-shape function

∫π
ω

ω
ω

ω=
̂

[ − ]
∞

g t
C

t( )
1

d
( )

1 cos( )c 0

c
2 (38)

which is equal to eq 10.
Using this, from eq 21 the decoherence function can be

written as

l
moo
noo
Ä

Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ
|
}oo
~oo

∫β
π

ω
ω

ω
β ω

β ω
ω

ω ω

= ℏ ̂
ℏ −

ℏ
[ − ]

+ [ − ]

∞

g t

C
t

t t

( )

2
d

( )
coth( /2)

2
1 cos( )

i sin( )

d

0

c

(39)

Now keeping the first two terms in the expansion of the
hyperbolic cotangent yields

{
}

∫β
π

ω
ω

ω
β ω ω

ω ω

≈ ℏ ̂ ℏ [ − ]

+ [ − ]

∞
g t

C
t

t t

( )
2

d
( )

6
1 cos( )

i sin( )

d 0

c

(40)

which one can show is precisely equal to eq 30 (as it should be,
since these are both high-temperature expansions). Expanding
this for short time gives

Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ ∫

β
π

β ω ω ω≈ ℏ ℏ − ̂
∞

g t
t

t C( )
12 2

i d ( )d

2

0
c

2

(41)

Since the integral is πΔ2/τs
2 (from eqs 15, 23, and 31), this

agrees exactly with eq 32. We note that one can also obtain the
t2 term in eq 41 directly from eq 22 and the expansion of the
hyperbolic cotangent in eq 36.8

2.5. When Is Decoherence Important? Now that we
have some expressions for gd(t), our next task is to determine
when quantum effects are important. This basically entails
comparing gd(t) to the classical function gc(t). In the simple
case where the short-time approximations to both gc(t) and
gd(t) (eqs 16 and 33) are valid, then quantum effects will be
substantial if τd < τp (since then gd(t) > gc(t), producing over a
factor of 2 increase in the line width). From eq 35, this will be
true if τ β< ℏ/2 3s .
More generally, in comparing these two functions we need

to see which is larger at the “relevant” times, those when the

dephasing function −e g t( )c is changing from 1 to 0. In particular,
the relevant times are those when gc(t) is about 1 (since then

=−e 1/egc ), so defining t* by gc(t*) = 1, decoherence will not
be important if Re{gd(t*)} ≪ 1, but it will be significant when
Re{gd(t*)} ≃ 1. To this end, let us consider the perturbative
(in powers of βℏΔ) expression for gd(t) in eq 30.
Since 1 − C̅c(t*) is bounded from above by 1, certainly it is

true that if

βℏΔ ≪( ) 122 (42)

then Re{gd(t*)} ≪ 1, independent of t*, which means that in
this case decoherence will not be important. Note that when
(βℏΔ)2 > 12, this does not imply that decoherence is always
important (see Section 5).
Regarding quantum effects on the peak frequency and shape

of the absorption spectrum, these will not be important if
|Im{gd(t*)}| ≪ 1 (that is, the phase of the decoherence

function −e g t( )d does not change too much over the relevant
time t*), which from eq 30 will certainly be true if

βℏΔ *
≪t

2
1

2

(43)

If one is in the inhomogeneous limit for classical dephasing
such that only the short-time behavior of gc(t) is important,
then from eq 13 * = Δt 2 / , in which case the inequality
becomes

βℏΔ ≪ 2 (44)

which is similar to the result for the real part in eq 42.
More generally still, one should use the full eq 30 to evaluate

gd(t*), or better yet, either of the equivalent nonperturbative
expressions in eqs 21 or 39 to determine when Re{gd(t*)},
|Im{gd(t*)}| ≪ 1.

3. EMISSION LINE SHAPE

It turns out that a discussion of the emission spectrum is also
quite illuminating, and so in this section we present some
theory for the emission line shape. In relaxed emission, the
system is equilibrated on the excited-state surface. The theory
of the line shape, then, is very similar to that for absorption,
except the roles of ground and excited states are reversed. If a
particular transition in absorption is significantly shifted from
its gas-phase value, and broadened considerably, this indicates
that the two potential surfaces of the bath (when the molecule
is in its ground or excited state) are significantly different. In
this case, equilibration on the two different surfaces may
produce significantly different absorption and emission line
shapes (and of course they are shifted from one another by
what is called the Stokes shift). If the system−bath coupling
(difference between the two surfaces) is weak, then in the
classical limit the Stokes shift is simply related to the mean-
square transition-frequency fluctuations for either surface.1 If it
is not weak, then this formula can be generalized.42 For all
these reasons, then, it is also of interest to consider quantum
effects in emission.
The general formula for the emission line shape can be

derived from Fermi’s golden rule in much the same way as the
usual derivation of the absorption line shape. The roles of the
two surfaces are reversed, however, since in this case the
transition begins on the equilibrated excited surface, the
dynamics occurs on the excited state surface, and the system
emits rather than absorbs a photon. For our two-state model,
the analogue to eq 4 for emission is

{ }∫ω ∼ ⟨ ⟩ω
∞

− ℏ − ℏI Re t m t m( ) d e ( )e e (0)t H t H t
1

0

i
1

i / i /
1 1

1 0

(45)

where now = ℏ − ℏm t m( ) e eH t H t
1

i / i /1 1 , and the subscript 1 on the
brackets indicates a thermal quantum average for the excited-
state bath Hamiltonian H1. Note that the sign in e

−iωt is correct
and differs from that in absorption, because in this case the
photon is being emitted and so the other delta function in
Fermi’s golden rule is operative. Again defining u = (H1 −
H0)/ℏ (exactly as before), but now = ℏ − ℏu t u( ) e eH t H t

1
i / i /1 1 ,

δu1(t) = u1(t) − ⟨u⟩1, and the analogue of eq 5 is
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The classical results analogous to eqs 6, 8, and 9 become
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for the classical non-Condon result

l
m
ooo
n
ooo

|
}
ooo
~
ooo{ }∫ ∫ω δ∼ − ′ ′ω

∞
−⟨ ⟩I Re t t u t( ) d e exp i d ( )u t

t

1
0

i( )

0
1

1c

1c

(48)

for the Condon approximation, and

{ }∫ω ∼ ω
∞

−⟨ ⟩ −I Re t( ) d e eu t g t
1

0

i( ) ( )1c 1c

(49)

for the cumulant approximation. Thus, these are completely
analogous to absorption, except the classical averages are with
respect to the excited-state surface, and the fluctuating
quantities are propagated on the excited-state surface. This
introduces new parameters for the excited-state surface such as
Δ1, the RMS frequency fluctuation on this surface.
For the quantum cumulant result, however, because g1(t) is

complex, the result analogous to eq 17 is

{ }∫ω ∼ ω
∞

−⟨ ⟩ − *I Re t( ) d e eu t g t

0

i( ) ( )1 1

(50)

Since the imaginary part of g1(t)* will now have the opposite
sign as in absorption, it means that the line shift due to
quantum effects will go in the other direction compared to
absorption. On the other hand, all the formulas for g1(t) in
emission are identical to g(t) in absorption, as long as C(t) is
replaced by C1(t) = ⟨δu1(t)δu1(0)⟩1.

4. STOKES SHIFT
The Stokes shift is the difference between the peak frequencies
in absorption and emission. Within the quantum theories at
the level of Condon and cumulant approximations (see eqs 17
and 50), this difference comes from two sources: the difference
in their average frequencies (⟨u⟩ and ⟨u⟩1), and additional
differences having to do with line-shape distortions and shifts
coming from the imaginary parts of g(t) and g1(t)*.
Traditionally, theorists usually consider only the former to
be the Stokes shift, and so we will adopt that same convention
in this section. Denoting the Stokes shift as ωS, we then have

ω = ⟨ ⟩ − ⟨ ⟩u uS 1 (51)

This can be rewritten as

ω δ δ= [⟨ ⟩ − ⟨ ⟩ ]u u
1
2S 1 1 (52)

where, as before, δu = u − ⟨u⟩ and δu1 = u − ⟨u⟩1.
Considering the first term and recalling that ℏu ≡ H1 − H0,

we have

δ
δ δ

δ
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[ ]
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[ ]
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where Tr is the trace over all bath quantum states. Using a
general quantum operator identity for parameter β and
(noncommuting) operators A and B,1,43 to lowest order in B

Ä

Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ∫ λ≈ −β β
β

λ λ− [ + ] − −Be e 1 d e eA B A A A

0 (54)

Eq 53 then becomes

δ β δ δ⟨ ⟩ ∼ ℏ⟨ ̃ ⟩u u u1 1 1 1 (55)

where δũ1 is the Kubo transform of δu1:
44

∫δ
β

λ δ̃ =
β

λ λ−u u
1

d e eH H
1

0
1

1 1

(56)

This can also be written as

∫δ λ λ⟨ ⟩ ≈ ℏ − ℏ
β

u Cd ( i )1
0

1 (57)

A similar calculation shows that

∫δ λ λ⟨ ⟩ ≈ −ℏ − ℏ
β

u Cd ( i )1
0 (58)

Thus, we arrive at

∫ω λ λ λ= ℏ [ − ℏ + − ℏ ]
β

C C
2

d ( i ) ( i )S
0

1 (59)

We believe that this result, which is valid for any general
Hamiltonians H0 and H1, is new. In the classical limit as β goes
to 0, the Stokes shift is

ω β β= ℏ [ + ] = ℏ [Δ + Δ ]C C
2

(0) (0)
2S 1c c 1

2 2
(60)

which agrees with our previous result.42 If the coupling to the
bath is sufficiently weak, or in the linearly coupled harmonic-
oscillator model, the mean-square frequency fluctuations on
the two surfaces are the same, and so we obtain the familiar
result1,45 from linear response theory that

ω β= ℏΔS
2

(61)

5. MODEL CLASSICAL FREQUENCY
TIME-CORRELATION FUNCTION

Before we consider a realistic system, we can profitably explore
quantum effects by considering a model classical FTCF. We
choose to revisit the model considered earlier by Lawrence and
Skinner:19

π τ= ΔC t t( ) sech( /2 )c
2

(62)

As described above, Δ is the RMS frequency fluctuation, and τ
is the correlation time defined by eq 14. Note that this model
is more physical than the exponential Kubo model,4 since the
short-time dynamics is quadratic; in fact, for this model τs =
2τ/π (see eq 31). Thus, this model has (essentially) a single
characteristic relaxation time.
Lawrence and Skinner19 investigated quantum effects by

calculating the quantum-corrected line shape numerically as a
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function of the two dimensionless ratios Δτ and βℏ/τ. They
showed percent deviations from the classical line width and
shift as a function of these parameters in contour plots. Armed
with our new analytical result in eq 30, in this paper we
calculate t* defined by gc(t*) = 1 (from eq 10), and then the
real and imaginary parts of gd(t*) (from eq 30), as described
above. These plots as a function of Δτ and βℏ/τ are shown in
Figures 1 and 2. As seen, they are very similar to the plots in ref

19, and in fact, the contours when the logs are −1 (white lines)
are very similar to the 10% deviation contours from that paper.
From this we conclude that when the (magnitudes of the) real
and imaginary parts of gd(t*) are 0.1 or smaller, quantum
effects will not be very important (as discussed in Section 2.5).
Our new analytic results in eq 30 show an explicit

dependence on the dimensionless product βℏΔ. This, with
the realization that the parts of eq 30 involving the classical
FTCF involve only the dimensionless product Δτ, leads to the
conclusion that it may be more meaningful to consider βℏΔ
and Δτ as the two independent dimensionless quantities. To
that end, for the above simple model classical FTCF we have
calculated t* as a function of Δτ, and then the log of the real
and imaginary parts of gd(t*) as a function of these two
dimensionless parameters. As above, regions where the log of
these quantities is less than −1 indicate parameter values
where quantum effects on the line shape will not be important.
The results for Log[Re{gd(t*)}] are shown in Figure 3. The

log is less than −1 for βℏΔ < 1, which is consistent with the
general argument in eq 42 that Re{gd(t*)} ≪ 1 when (βℏΔ)2
≪ 12. The results for Log[|Im{gd(t*)}|] are shown in Figure 4.
Here, we see that, for βℏΔ < 1, and Δτ > 1, the contours are
less than −1, and so quantum effects should not be important
for the line shift (and shape distortion). This is consistent with

the general argument above that quantum effects for the line
shift are not important if (classically) one is in the
inhomogeneous limit (Δτ > 1), and βℏΔ ≪ 2 . So, quite
generally, we see that for this simple model quantum effects for
both the line width and shift will not be important when Δτ >
1 and βℏΔ < 1. However, also note from these figures that if
Δτ > 1, as long as Δτ > βℏΔ, βℏΔ itself can get arbitrarily large
and quantum ef fects will still not be important. This is all
consistent with the requirement that if βℏ/τ < 1, quantum
effects will not be important, as noted previously19 and shown
in Figures 1 and 2 herein.

6. EXAMPLE: DILUTE HOD IN LIQUID D2O
In this section we consider a simple example of a dilute
vibrational chromophore in a liquid: the OH stretch of dilute
HOD in liquid D2O. The isotope substitution allows one to
study an isolated chromophore and avoids the significant
complications of OH stretch vibrational coupling in neat
water.46,47 Thus, this is a useful, well-studied, and representa-
tive system. Lawrence and Skinner considered this problem in
their 2005 paper19 by performing a molecular-dynamics
simulation of rigid SPC/E48 water and used a frequency map
to determine the OH stretch frequency for a given
configuration. They then calculated the classical FTCF from
the simulation, and from that calculated the classical
absorption spectrum within the Condon and cumulant
approximations. They then used the harmonic QCF to
calculate the quantum-corrected FTCF and absorption line
shape. Due to space limitations, the actual line shapes were not
shown in the paper. The imaginary part of C(t) is negative,
which led to a red-shift in the absorption spectrum of 14 cm−1,
or about 5% of the classical line width. The quantum

Figure 1. Log[Re{gd(t*)}] as a function of Log[Δτ] and Log[βℏ/τ].
The white line corresponds to Re{gd(t*)} = 0.1.

Figure 2. Log[|Im{gd(t*)}|] as a function of Log[Δτ] and Log[βℏ/τ].
The white line corresponds to |Im{gd(t*)}| = 0.1.

Figure 3. Log[Re{gd(t*)}] as a function of Log[Δτ] and Log[βℏΔ].
The white line corresponds to Re{gd(t*)} = 0.1.

Figure 4. Log[|Im{gd(t*)}|] as a function of Log[Δτ] and Log[βℏΔ].
The white line corresponds to |Im{gd(t*)}| = 0.1.
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correction to the line width was negligible. From these results
they concluded that quantum effects were small for this system.
In this Article our goal is to confirm these previous results

and then extend them in the following ways: (1) to present
actual results for the line shapes themselves; (2) to compare
classical spectra at three levels of approximation (exact,
Condon approximation, and cumulant approximation), to
make the case that our conclusions within the cumulant
approximation are qualitatively correct; (3) to explore whether
the criteria discussed above regarding gd(t*) for the
importance of quantum effects are useful and correct; and
(4) to consider the emission line shape and Stokes shift.
6.1. Simulation and Spectroscopy Protocols. In order

to calculate absorption spectra of HOD in D2O, the ground-
state molecular-dynamics simulations are performed using the
LAMMPS49 program. The simulation box contains 216
SPC/E48 water molecules at the experimental density of liquid
H2O at 298 K (0.997 g/mL50). Three-dimensional periodic
boundary conditions are applied, and electrostatic interactions
are calculated using the particle−particle particle−mesh
summation.51 The cutoff for Lennard-Jones interactions is
0.9 nm. The equations of motion are integrated with a 1 fs
time step using the velocity Verlet integrator and SHAKE52

algorithm for constraints. The Nose−́Hoover53,54 algorithm
with damping parameter of 0.1 ps is used to maintain the
system at a constant temperature of 298 K during an
equilibration run of 1 ns. This is followed by a production
run at constant energy, during which the coordinates of all
atoms are saved every 10 fs for spectroscopy calculations.
The dilute HOD in D2O system consists of isolated OH

stretch chromophores, since the frequency mismatch with OD
stretches renders any vibrational coupling ineffective. To
model this system with our pure H2O simulation, for the
purpose of spectroscopy calculations, 215 H2O molecules are
implicitly treated as D2O molecules, one randomly chosen
H2O molecule is chosen as the HOD molecule, and one of the
OH stretches is chosen as the OH stretch chromophore. As in
previous work we use spectroscopic maps to determine the
frequency and transition dipole moment for an OH stretch
chromophore in any D2O environment. In this case, we use the
maps for the frequency from ref 55, and for the matrix element
and transition dipole from ref 56. Note that these simulations
and spectroscopic calculations are not precisely the same as
those performed in refs 19 and 57. Moreover, there are more
accurate simulation models58 and frequency maps56 now
available for this problem if one is primarily interested in a
comparison with experimental results, but that is not our aim
here. The population relaxation contribution to the line shape
was included phenomenologically by multiplying integrands in
the line-shape expressions by the exponential factor
exp(−t/2T1), where the lifetime, T1, of the vibrationally
excited state is taken to be 700 fs,59−62 which corresponds to a
natural line width of 8 cm−1. Since line shapes of liquid water
are much broader than that, lifetime broadening does not have
a significant effect on the line shapes reported in this work.
The OH-stretch emission spectrum of dilute HOD in D2O

involves molecular-dynamics simulation with the excited-state
Hamiltonian H1 = H0 + ℏu. Thus, while the ground-state
simulations relevant for absorption have atomic forces derived
only from H0 (in this case the SPC/E force field), for the
emission spectrum one needs to include the forces from u.
According to the spectroscopic maps we use, u is a function of
the electric field at the relevant H atom.55 Since the electric

field is a function of all the nuclear coordinates, one can derive
the atomic forces due to the vibrationally excited OH stretch.
This excited-state force field was implemented in LAMMPS
and is available on GitHub.63 Note, however, that when
running on the ground-state surface, one can, in parallel, treat
each OH stretch as the special one, since the dynamics is
independent of which one you choose, but for the excited-state
simulation one has to run the dynamics for a specific choice of
which H atom is the special one, and so the statistics are much
worse. Hence, much more simulation time is required.

6.2. Classical Line-Shape Results. The classical FTCFs
for simulation on the ground and excited state surfaces, Cc(t)
and C1c(t) (for absorption and emission, respectively), are
shown in Figure 5. While the initial values are different (that is,

Δ1 > Δ), they both have a recurrence at about 130 fs due to
the hydrogen-bond stretch,64 and they both decay to zero in 1
or 2 ps. The parameters obtained from fitting these two FTCFs
(Δ from eq 12, τs from eq 31, and τ from eq 14) are given in
Table 1. Note that for emission the parameter labels should
each be subscripted with 1, but for ease of presentation we
have suppressed that notation.

The area-normalized classical line shapes for absorption and
emission, with no approximation (from eqs 6 and 47), with the
Condon approximation (from eqs 8 and 48), and with the
Condon and cumulant approximations (from eqs 9 and 49),
are shown in Figure 6. Note that the angular frequencies have
been converted to cm−1 by ν ̃ = ω/2πc. First, considering the
“exact” line shapes (in this context exact means without
making the Condon or cumulant approximations), one sees a
significant Stokes shift from absorption to emission. As is well-
understood, the Condon approximation line shapes are blue-
shifted from the exact line shapes, since the transition dipole is
much stronger on the red side of the line. Both Condon
approximation line shapes have shoulders above 3600 cm−1

due to non-hydrogen-bonded OH groups. These shoulders do
not show up in the exact line shapes because their transition
dipoles are very weak. The cumulant line shapes are not
significantly different from the Condon ones, except they are
necessarily symmetric (the peak frequency equals the average
frequency), and so the blue shoulders have disappeared. The
peak frequencies and FWHM values of these line shapes are

Figure 5. Classical FTCFs Cc(t) and C1c(t) for absorption and
emission, respectively, as a function of time t (for HOD/D2O).

Table 1. Values of the Parameters for the Classical FTCFs
for Absorption and Emission (for HOD/D2O)

Δ (ps−1) τs (ps) τ (ps)

absorption 27.9 0.019 0.34
emission 32.3 0.019 0.35
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shown in Table 2, as well as the Stokes shifts for the three
levels of approximation. On the whole, the three levels of

approximation give qualitatively similar absorption and
emission spectra, and especially the Stokes shift does not
change too much. This gives us some confidence that the
conclusions we draw from the cumulant line shapes will carry
over to the exact line shapes.
Note that in this section the Stokes shift is the difference in

the actual peak frequencies in absorption and emission. Only
in the case of the cumulant approximation is this the same as
the difference between the average frequencies (as in eq 51).
We can compare the value of the cumulant Stokes shift from
Table 2, 127 cm−1, with that from eq 60 (the values of Δ and
Δ1 come from Table 1), which is 125 cm−1. The agreement is
excellent, and significantly better than with the result from
using eq 61, 107 cm−1, which shows that this problem is not in
the weak-coupling limit, and the shifted harmonic-oscillator
model does not apply.
6.3. Quantum Line-Shape Results. Next we consider

quantum effects on these line shapes (that is, the importance of
decoherence). We begin by examining gd(t*), as discussed
earlier. We calculate t* in absorption and emission from gc(t*)
= 1, and then evaluate gd(t*) from eq 30 and its analogue for
emission. The results are shown in Table 3. Since in both cases
Re{gd(t*)} ≪ 1, we do not expect that quantum effects will be
important for the line width. |Im{gd(t*)}| is on the order of 0.1,

and so we expect modest quantum effects on line shift and
shape.
Numerical results for the quantum-corrected line shapes are

obtained from the full (nonperturbative) results for the line-
broadening function g(t) in eq 37 (and its analogue in
emission). Note that in calculating quantum line shapes from
eqs 17 and 50 we replace ⟨u⟩ and ⟨u⟩1 by ⟨u⟩c and ⟨u⟩1c, as it is
difficult to calculate the former. The area-normalized results
are shown in Figure 7. One sees very small changes in the line

widths, and modest red- and blue-shifts in absorption and
emission, respectively, as discussed earlier. The changes
(quantum-corrected minus classical) in widths and peak
frequencies are shown in Table 4. Thus, the conclusions

from our gd(t*) analysis are borne out by our numerical
calculations, and we confirm our previous conclusion that
quantum effects are really quite modest for this system. We
also note that for absorption the width and shift changes (2.5
and −17 cm−1, respectively), agree well with what we obtained
previously (≈ 0 and −14 cm−1, respectively).19 Finally, we
note that a decade ago Paesani, Xantheas, and Voth65

calculated bath quantum effects on the OD frequency
distribution of dilute HOD in H2O and found results very
similar to the absorption spectra shown in Figure 7.
It is interesting that since frequency shifts due to bath

quantum effects for absorption and emission are in opposite
directions, the change in the Stokes shift due to quantum
effects is significant (40 cm−1, see Table 4), and so including
these quantum effects in this model predicts a Stokes shift of
(127 − 40) cm−1 = 87 cm−1. The experimental situation
regarding the vibrational Stokes shift for HOD/D2O is,
regrettably, unclear; earlier work reported a value of 70
cm−1,66 while more recent work found that values were widely
scattered, depending on time delay and pump frequency.67

7. DISCUSSION AND CONCLUSION
The results of the last section show that within this model for
the OH-stretch vibrational fundamental transition of dilute
HOD in liquid D2O bath quantum effects have only a modest
effect on the absorption line shape. Our approach, of course,
involves a number of approximations: (1) the approximate

Figure 6. Absorption and emission line shapes at three different levels
of approximation (for HOD/D2O).

Table 2. Parameters of the Absorption and Emission Line
Shapes at Three Levels of Approximation (for HOD/D2O)a

FWHM (cm−1) ωp (cm
−1) ωS (cm

−1)

exact absorption 284 3396 124
emission 327 3272

condon absorption 359 3430 106
emission 325 3324

cumulant absorption 297 3458 127
emission 340 3331

aFWHM is the full-width at half maximum, ωp is the peak frequency,
and ωS is the Stokes shift (see text for details).

Table 3. t* and the Real and Imaginary Parts of gd(t*), for
Absorption and Emission (for HOD/D2O)

t* (ps) Re[gd(t*)] Im[gd(t*)]

absorption 0.056 0.021 −0.11
emission 0.048 0.031 −0.11

Figure 7. Quantum-corrected (including decoherence) and classical
cumulant line shapes in absorption and emission (for HOD/D2O).

Table 4. Quantum Effects on Absorption and Emission Line
Shapes (for HOD/D2O), as Indicated by Changes in the
FWHM, Peak Frequency, and Stokes Shift

δFWHM (cm−1) δωp (cm
−1) δωS (cm

−1)

absorption 2.5 −17 −40
emission 4.3 23
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classical modeling of the ground-state Hamiltonian (SPC/E
water force field), (2) the bath dependence of the transition
frequency (through a frequency map), (3) the harmonic QCF
to approximate the bath quantum effects in the FTCF, (4) the
Condon approximation, and (5) the cumulant approximation.
The first two approximations have been validated by water
spectroscopy in a number of circumstances.47 The harmonic
QCF, while certainly an uncontrolled approximation, is the
only reasonable choice of QCF for absorption spectroscopy,9,19

and since the localized and collective modes of a liquid bath
are actually quite harmonic,41 this may be a good
approximation. Furthermore, this QCF is exact for the popular
spectroscopic model of shifted harmonic oscillators.22 The
Condon and cumulant approximations are also uncontrolled,
but we have demonstrated herein that our results are not
qualitatively different if we make these approximations.
We have one more general argument suggesting that bath

quantum effects are not important for this system. Others have
observed that the magnitude of the decoherence function,

− { }e Re g t( )d , is Gaussian,7,8,38 and indeed we find that under
certain circumstances this is the case (see eqs 32−34). If this is
so, and assuming that the classical dephasing is more or less in
the inhomogeneous limit, quantum effects will be significant if
τ β< ℏ/2 3s (see Section 2.5). Recall that τs is the time
constant for the short-time dynamics of the classical FTCF, as
in eq 31. At room temperature, βℏ = 26 fs, and so this
inequality is τs ≤ 7 fs. This is not possible for the bath
(rotational and translational) degrees of freedom in water, as
these nuclear motions are on longer time scales.47,64

Joutsuka et al.38 have considered the same HOD in D2O
system and reached a different conclusion: that quantum bath
effects are quite significant, as described by a Gaussian
decoherence function, leading to an increase of a factor of
almost 2 in the line width. Their starting point for the line
shape is exactly the same as ours, but their theoretical approach
is quite different. They calculate directly quantum dynamics on
the two relevant potential surfaces using the FGA. As
mentioned earlier, this method can be shown to be exact for
the model of shifted harmonic potential surfaces.27,28 For more
realistic models for the classical dynamics, the FGA makes
uncontrolled approximations. Even so, in their study of
nonadiabatic transition rates for the solvated electron in
water and methanol, Borgis, Turi, and Rossky7,8,37 compared
the FGA with a QCF approach similar to the one presented in
this Article and found the corresponding decoherence times to
be nearly the same. We do not understand the discrepancy
between the results of the two methods for HOD/D2O,
although perhaps it is due to the neglect of librational motions
in the FGA, as noted by Joutsuka et al.38

Turning now to a discussion of the importance of quantum
effects for general electronic and vibrational absorption spectra,
it is difficult to make precise comments without microscopic
calculations for specific systems. On the other hand, we do
have general results for a model FTCF (see Section 5);
however, this model has only one characteristic time, whereas
realistic systems usually have at least two characteristic times.
Typically, the FTCF decays to less than half of its initial value
within several tens of femtoseconds, and this time is more
important than the longer characteristic time for controlling
the spectroscopy. Therefore, we will proceed by using the
model calculations, and taking τ = 26 fs (the time scale of the
initial drop; see, for example, Figure 1 of ref 9). At room

temperature this gives βℏ/τ = 1, and Log[βℏ/τ] = 0. From
Figure 1 we see that in this case any value of Δ will lead to
insignificant effects on line broadening. In Figure 2 we see that
if Log[Δτ] > 0, there will be insignificant quantum effects on
the line position and distortion. This corresponds to Δτ > 1, or
taking τ = 26 fs, Δ > 38 ps−1, which corresponds to Δ > 200
cm−1. Thus, for virtually all electronic transitions (which
typically have significantly larger values of Δ), and many
vibrational transitions, we expect quantum effects to be
minimal, with the only exceptions being for relatively narrow
lines not in the inhomogeneous limit.
Theoretical calculations of vibrational and electronic line

shapes can complement and support experimental results. The
results reported herein suggest that, with realistic potential
models, classical molecular-dynamics simulations can be
profitably used to calculate such line shapes. In the presumably
rare instances that quantum effects are needed, it is quite
straightforward to incorporate them with the harmonic QCF,
as demonstrated herein.
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